题目内容

已知
tan2α
1+2tanα
=
1
3
,α∈(
π
2
,π)
(Ⅰ)求tanα的值;
(Ⅱ)求
sinα+2cosα
5cosα-sinα
的值.
考点:同角三角函数基本关系的运用
专题:三角函数的求值
分析:(Ⅰ)已知等式整理求出tanα的值即可;
(Ⅱ)原式分子分母除以cosα,利用同角三角函数间的基本关系化简,将tanα的值代入计算即可求出值.
解答: 解:(Ⅰ)由
tan2α
1+2tanα
=
1
3
,整理得:3tan2α-2tanα-1=0,即(3tanα+1)(tanα-1)=0,
解得:tanα=-
1
3
或tanα=1,
∵α∈(
π
2
,π),
∴tanα<0,
∴tanα=-
1
3

(Ⅱ)∵tanα=-
1
3

∴原式=
tanα+2
5-tanα
=
-
1
3
+2
5+
1
3
=
5
16
点评:此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网