题目内容
1.若实数x,y满足不等式组$\left\{\begin{array}{l}2x+y+2≥0\\ x+y+m≤0\\ y≥0\end{array}\right.$,则z=y-2x最小值等于-2,z的最大值10.分析 作出不等式组对应的平面区域,利用目标函数的几何意义,先求出m的值,然后结合数形结合即可得到结论.
解答
解:由z=y-2x,得y=2x+z,
作出不等式对应的可行域,
平移直线y=2x+z,
由平移可知当直线y=2x+z经过点C时,
直线y=2x+z的截距最小,此时z取得最小值-2,
由$\left\{\begin{array}{l}{y-2x=-2}\\{y=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=0}\end{array}\right.$,即C(1,0),
将C(1,0)代入x+y+m=0,得m=-1,
即此时直线方程为x+y-1=0,
当直线y=2x+z经过点B时,
直线y=2x+z的截距最大,此时z取得最大值
由$\left\{\begin{array}{l}{2x+y+2=0}\\{x+y-1=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=-3}\\{y=4}\end{array}\right.$,即B(-3,4),
此时z的最大值为z=4-2×(-3)=10,
故答案为:10
点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.
练习册系列答案
相关题目
16.函数f(x)=log2(x-1)+log2(3-x)( )
| A. | 在(1,3)上是增函数 | B. | 在(1,3)上是减函数 | C. | 最小值为1 | D. | 最大值为0 |
6.已知一个几何体的三视图如图所示,则该几何体的表面积是( )

| A. | 3 | B. | 6 | C. | 12 | D. | 18 |
13.我市在对高三学生的综合素质评价中,将其测评结果分为“A、B、C”三个等级,其中A表示“优秀”,B表示“良好”,C表示“合格”.
(1)某校高三年级有男生1000人,女生700人,为了解性别对该综合素质评价结果的影响,采用分层抽样的方法从高三学生中抽取了85名学生的综合素质评价结果,其各个等级的频数统计如表:
根据表中统计的数据填写下面2×2列联表,并判断是否有95%的把握认为“综合素质评价测评结果为优秀与性别有关”?
(2)以(1)中抽取的85名学生的综合素质评价等级为“合格”的学生中按分层抽样随机抽取6人.再从这6人中任选2人去参加“提高班”培训,求所选6人中恰有2人为男生的概率.
参考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
临界值表:
(1)某校高三年级有男生1000人,女生700人,为了解性别对该综合素质评价结果的影响,采用分层抽样的方法从高三学生中抽取了85名学生的综合素质评价结果,其各个等级的频数统计如表:
| 等级 | 优秀 | 良好 | 合格 |
| 男生(人) | 16 | x | 8 |
| 女生(人) | 18 | 13 | y |
| 男生 | 女生 | 总计 | |
| 优秀 | |||
| 非优秀 | |||
| 总计 |
参考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
临界值表:
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
10.已知集合A={-1,0,1},B={0,1,2},那么A∩B等于( )
| A. | {0} | B. | {1} | C. | {0,1} | D. | {-1,0,1,2} |