题目内容
11.已知矩阵$A=[{\begin{array}{l}1&{\frac{1}{2}}\\ 0&1\end{array}}],B=[{\begin{array}{l}1&0\\ 0&2\end{array}}]$,设点$P({\frac{7}{4},\frac{5}{2}})$在矩阵BA对应的变换TBA作用下得到P'点,求点P'的坐标.分析 根据矩阵的乘法求得矩阵BA,则$[\begin{array}{l}{1}&{\frac{1}{2}}\\{0}&{2}\end{array}]$$[\begin{array}{l}{\frac{7}{4}}\\{\frac{5}{2}}\end{array}]$=$[\begin{array}{l}{3}\\{5}\end{array}]$,即可求得点P'的坐标.
解答 解:由矩阵$A=[{\begin{array}{l}1&{\frac{1}{2}}\\ 0&1\end{array}}],B=[{\begin{array}{l}1&0\\ 0&2\end{array}}]$,则BA=$[\begin{array}{l}{1}&{0}\\{0}&{2}\end{array}]$$[\begin{array}{l}{1}&{\frac{1}{2}}\\{0}&{1}\end{array}]$=$[\begin{array}{l}{1}&{\frac{1}{2}}\\{0}&{2}\end{array}]$,
从而$[\begin{array}{l}{1}&{\frac{1}{2}}\\{0}&{2}\end{array}]$$[\begin{array}{l}{\frac{7}{4}}\\{\frac{5}{2}}\end{array}]$=$[\begin{array}{l}{3}\\{5}\end{array}]$,
∴点P'的坐标(3,5).
点评 本题考查矩阵的乘法,点的坐标变换,考查转化思想,属于中档题.
练习册系列答案
相关题目
19.已知a是实数,$\frac{a-i}{1+i}$是纯虚数,则a=( )
| A. | -1+2i | B. | 1 | C. | 3 | D. | 3-2i |
20.“因为e=2.71828…是无限不循环小数,所以e是无理数”,以上推理的大前提是( )
| A. | 实数分为有理数和无理数 | B. | e不是有理数 | ||
| C. | 无限不循环小数都是无理数 | D. | 无理数都是无限不循环小数 |