ÌâÄ¿ÄÚÈÝ
4£®ÒÑÖªÖ±Ïß1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-3-\frac{\sqrt{6}}{3}t}\\{y=\frac{\sqrt{3}}{3}t}\end{array}\right.$ £¨tΪ²ÎÊý£©£¬ÔÚÖ±½Ç×ø±êϵÖУ¬ÒÔÔµãOΪԵ㣬xΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ·½³ÌΪ¦Ñ=4$\sqrt{2}$cos£¨¦È+$\frac{¦Ð}{4}$£©+4sin¦È£®£¨1£©ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©µãP¡¢Q·Ö±ðΪֱÏß1ÓëÇúÏßCÉϵ͝µã£¬Çó|PQ|µÄȡֵ·¶Î§£®
·ÖÎö £¨1£©ÇúÏßCµÄ¼«×ø±ê·½³Ìת»¯Îª¦Ñ2=4¦Ñcos¦È£¬ÓÉ´ËÄÜÇó³öÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£®
£¨2£©ÇúÏßC£º£¨x-2£©2+y2=4ÊÇÒÔC£¨2£¬0£©ÎªÔ²ÐÄ£¬°ë¾¶r=2µÄÔ²£¬Ö±Ïß1µÄ²ÎÊý·½³ÌÏûÈ¥²ÎÊýt£¬µÃÖ±ÏßlµÄÆÕͨ·½³ÌΪx+$\sqrt{2}$y+3=0£¬Çó³öÔ²ÐÄC£¨2£¬0£©µ½Ö±ÏßlµÄ¾àÀëd=$\frac{5\sqrt{3}}{3}$£¬ÓÉ´ËÄÜÇó³ö|PQ|µÄȡֵ·¶Î§£®
½â´ð ½â£º£¨1£©¡ßÇúÏßCµÄ·½³ÌΪ¦Ñ=4$\sqrt{2}$cos£¨¦È+$\frac{¦Ð}{4}$£©+4sin¦È£¬
¡à$¦Ñ=4\sqrt{2}£¨cos¦Ècos\frac{¦Ð}{4}-sin¦Èsin\frac{¦Ð}{4}£©+4sin¦È$=4cos¦È£®
¡à¦Ñ2=4¦Ñcos¦È£¬
¡àÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌΪx2+y2=4x£¬¼´£¨x-2£©2+y2=4£®
£¨2£©ÇúÏßC£º£¨x-2£©2+y2=4ÊÇÒÔC£¨2£¬0£©ÎªÔ²ÐÄ£¬°ë¾¶r=2µÄÔ²£¬
Ö±Ïß1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-3-\frac{\sqrt{6}}{3}t}\\{y=\frac{\sqrt{3}}{3}t}\end{array}\right.$ £¨tΪ²ÎÊý£©£¬
ÏûÈ¥²ÎÊýt£¬µÃÖ±ÏßlµÄÆÕͨ·½³ÌΪx+$\sqrt{2}$y+3=0£¬
Ô²ÐÄC£¨2£¬0£©µ½Ö±ÏßlµÄ¾àÀëd=$\frac{|2+0+3|}{\sqrt{1+2}}$=$\frac{5\sqrt{3}}{3}$£¬
¡ßµãP¡¢Q·Ö±ðΪֱÏß1ÓëÇúÏßCÉϵ͝µã£¬
¡à|PQ|µÄȡֵ·¶Î§ÊÇ[$\frac{5\sqrt{3}}{3}-2$£¬$\frac{5\sqrt{3}}{3}$+2]£®
µãÆÀ ±¾Ì⿼²éÇúÏßµÄÖ±½Ç×ø±ê·½³ÌµÄÇ󷨣¬¿¼²éÏ߶㤵Äȡֵ·¶Î§µÄÇ󷨣¬¿¼²é²ÎÊý·½³Ì¡¢Ö±½Ç×ø±ê·½³Ì¡¢¼«×ø±ê·½³ÌµÄ»¥»¯¡¢µãµ½Ö±ÏߵľàÀ빫ʽµÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ï룬º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮
| A£® | £¨e£¬+¡Þ£© | B£® | £¨-¡Þ£¬e£© | C£® | £¨0£¬$\frac{1}{e}$£© | D£® | £¨1£¬+¡Þ£© |
| A£® | sin¦È£¾0 | B£® | cos¦È£¼0 | C£® | tan¦È£¾0 | D£® | sin¦Ètan¦È£¾0 |