题目内容
已知集合M∈{1,-2,3},N∈{-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,求这样的坐标在直角坐标系中可表示第一、二象限内不同的点的个数.
考点:分步乘法计数原理
专题:排列组合
分析:本题首先分类在每一类中又分步,M中的元素作点的横坐标,N中的元素作点的纵坐标,N中的元素作点的横坐标,M中的元素作点的纵坐标,分别可以得到在第一和第二象限中点的个数,根据分类加法原理得到结果.
解答:
解:由题意知本题是一个分类和分步的综合问题,
M中的元素作点的横坐标,N中的元素作点的纵坐标,在第一象限的点共有2×2个,
在第二象限的点共有1×2个.
N中的元素作点的横坐标,M中的元素作点的纵坐标,在第一象限的点共有2×2个,
在第二象限的点共有2×2个.
∴所求不同的点的个数是2×2+1×2+2×2+2×2=14(个).
M中的元素作点的横坐标,N中的元素作点的纵坐标,在第一象限的点共有2×2个,
在第二象限的点共有1×2个.
N中的元素作点的横坐标,M中的元素作点的纵坐标,在第一象限的点共有2×2个,
在第二象限的点共有2×2个.
∴所求不同的点的个数是2×2+1×2+2×2+2×2=14(个).
点评:本题考查分步计数原理和分类计数原理,是一个综合题目,首先分类,每类方法并不都是一步完成的,必须在分类后又分步,综合利用两个原理解决.
练习册系列答案
相关题目
下列命题错误的是( )
| A、若p或q为假命题,则p,q均为假命题 |
| B、命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0” |
| C、若某一集合有4个元素,那么它真子集的个数共有24个 |
| D、?x∈Z,x3<1 |
直线:x-4y=0与圆:
,(θ为参数)的位置关系是( )
|
| A、相切 | B、相离 |
| C、直线过圆心 | D、相交但直线不过圆心 |