题目内容

已知函数f(x)=(x2-2x)lnx+ax2+2.
(Ⅰ)当a=-1时,求f(x)在点(1,f(1))处的切线方程;
(Ⅱ)当a>0时,设函数g(x)=f(x)-x-2,且函数g(x)有且仅有一个零点,若e-2<x<e,g(x)≤m,求m的取值范围.
考点:利用导数研究曲线上某点切线方程,函数零点的判定定理
专题:导数的综合应用
分析:(Ⅰ)当a=-1时,求导数,可得切线斜率,求出切点坐标,即可求f(x)在(1,f(1))处的切线方程;
(Ⅱ)由g(x)=f(x)-x-2=0,可得a=
1-(x-2)lnx
x
,令h(x)=
1-(x-2)lnx
x
,证明h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,可得h(x)max=h(1)=1,即可求得函数g(x)有且仅有一个零点a的值,然后结合e-2<x<e,g(x)≤m,求出g(x)max,即可求得m的取值范围.
解答: 解:(Ⅰ)当a=-1时,f(x)=(x2-2x)•lnx-x2+2,定义域(0,+∞),
∴f′(x)=(2x-2)•lnx+(x-2)-2x.
∴f′(1)=-3,
又f(1)=1,
∴f(x)在(1,f(1))处的切线方程3x+y-4=0;

(Ⅱ)g(x)=f(x)-x-2=0,
则(x2-2x)•lnx+ax2+2=x+2,即a=
1-(x-2)lnx
x

令h(x)=
1-(x-2)lnx
x

则h′(x)=
1-x-2lnx
x2
,令t(x)=1-x-2lnx,则t′(x)=
-x-2
x

∵x>0,∴t′(x)<0,
∴t(x)在(0,+∞)上是减函数,
又∵t(1)=h′(1)=0,
∴当0<x<1时,h′(x)>0,当x>1时,h′(x)<0,
∴h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,
∴h(x)max=h(1)=1,
∴当函数g(x)有且仅有一个零点时a=1,
当a=1时,g(x)=(x2-2x)•lnx+x2-x,
若e-2<x<e,g(x)≤m,只需证明g(x)max≤m,
∴g′(x)=(x-1)(3+2lnx),
令g′(x)=0,得x=1或x=e-
3
2

又∵e-2<x<e,
∴函数g(x)在(e-2,e-
3
2
)上单调递增,在(e-
3
2
,1)上单调递减,在(1,e)上单调递增,
又g(e-
3
2
)=-
1
2
e-3+2e-
3
2
,g(e)=2e2-3e,
∵g(e-
3
2
)=-
1
2
e-3+2e-
3
2
<2e-
3
2
<2e<2e(e-
3
2
)=g(e),
∴g(e-
3
2
)<g(e),
∴m≥2e2-3e.
点评:本题考查导数知识的综合运用,考查导数的几何意义,考查函数的单调性与最值,考查分离参数法的运用,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网