题目内容

8.如图,在四棱锥P-ABCD中,O∈AD,AD∥BC,AB⊥AD,AO=AB=BC=1,PO=$\sqrt{2}$,$PC=\sqrt{3}$.
(I)证明:平面POC⊥平面PAD;
(II)若CD=$\sqrt{2}$,三棱锥P-ABD与C-PBD的体积分别为V1、V2,求证V1=2V2

分析 (Ⅰ)推导出OC⊥AD,OC⊥PO,OC⊥平面PAD,由此能证明平面POC⊥平面PAD.
(Ⅱ)推导出OC⊥OD,AD=2,设点P到平面ABCD的距离为h,由平行线BC与AD之间的距离为1,能证明V1=2V2

解答 证明:(Ⅰ)在四边形OABC中,
∵AO∥BC,AO=BC,AB⊥AD,
∴四边形OABC是正方形,得OC⊥AD,(2分)
在△POC中,∵PO2+OC2=PC2,∴OC⊥PO,(4分)
又PO∩AD=O,∴OC⊥平面PAD,
又OC?平面POC,
∴平面POC⊥平面PAD.(6分)
(Ⅱ)由(Ⅰ)知,四边形ABCO为正方形,
∴OC=AB=1,OC⊥OD,(8分)
∴$OD=\sqrt{C{D^2}-O{C^2}}=1$,从而AD=2,(9分)
设点P到平面ABCD的距离为h,∵平行线BC与AD之间的距离为1,
∴$\frac{V_1}{V_2}=\frac{{\frac{1}{3}{S_{△ABD}}•h}}{{\frac{1}{3}{S_{△BCD}}•h}}=\frac{{{S_{△ABD}}}}{{{S_{△BCD}}}}=\frac{{\frac{1}{2}AD•1}}{{\frac{1}{2}BC•1}}=\frac{AD}{BC}=2$,(11分)
即V1=2V2.(12分)

点评 本题考查面面垂直的证明,考查两几何体体积的数量关系的证明,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网