题目内容

16.已知1+i=$\frac{i}{z}$,则在复平面内,复数z所对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用复数的运算法则、几何意义即可得出.

解答 解:1+i=$\frac{i}{z}$,∴z=$\frac{i}{1+i}$=$\frac{i(1-i)}{(1+i)(1-i)}$=$\frac{1}{2}+\frac{1}{2}$i.
在复平面内,复数z所对应的点$(\frac{1}{2},\frac{1}{2})$在第一象限.
故选:A.

点评 本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网