题目内容
2.i是虚数单位,则复数$\frac{i}{1+i}$的虚部是( )| A. | $\frac{1}{2}$ | B. | $\frac{1}{2}i$ | C. | $-\frac{1}{2}$ | D. | $-\frac{1}{2}i$ |
分析 利用复数的运算法则、虚部的定义即可得出.
解答 解:复数$\frac{i}{1+i}$=$\frac{i(1-i)}{(1+i)(1-i)}$=$\frac{1}{2}+\frac{1}{2}i$的虚部是$\frac{1}{2}$.
故选:A.
点评 本题考查了复数的运算法则、共轭复数的定义、虚部的定义,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
10.若球的大圆周长为4π,则这个球的表面积为( )
| A. | 8π | B. | 16π | C. | $\frac{8}{3}$π | D. | $\frac{16}{3}$ |
7.已知实数a,b满足(a+bi)•(1+i)=4i,其中i是虚数单位,若z=a+bi-4,则在复平面内,复数z所对应的点位于( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
1.用反证法证明:若整系数一元二次方程ax2+bx+c=0(a≠0)有有理数根,那么a,b,c中至少有一个是偶数.用反证法证明时,下列假设正确的是( )
| A. | 假设a,b,c都是偶数 | B. | 假设a,b,c都不是偶数 | ||
| C. | 假设a,b,c至多有一个偶数 | D. | 假设a,b,c至多有两个偶数 |