题目内容

1.用反证法证明:若整系数一元二次方程ax2+bx+c=0(a≠0)有有理数根,那么a,b,c中至少有一个是偶数.用反证法证明时,下列假设正确的是(  )
A.假设a,b,c都是偶数B.假设a,b,c都不是偶数
C.假设a,b,c至多有一个偶数D.假设a,b,c至多有两个偶数

分析 本题考查反证法的概念,逻辑用语,否命题与命题的否定的概念,逻辑词语的否定.根据反证法的步骤,假设是对原命题结论的否定,故只须对“b、c中至少有一个偶数”写出否定即可.

解答 解:根据反证法的步骤,假设是对原命题结论的否定
“至少有一个”的否定“都不是”.
即假设正确的是:假设a、b、c都不是偶数
故选:B.

点评 一些正面词语的否定:“是”的否定:“不是”;“能”的否定:“不能”;“都是”的否定:“不都是”;“至多有一个”的否定:“至少有两个”;“至少有一个”的否定:“一个也没有”;“是至多有n个”的否定:“至少有n+1个”;“任意的”的否定:“某个”;“任意两个”的否定:“某两个”;“所有的”的否定:“某些”.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网