题目内容
14.某科研机构为了研究中年人秃发与心脏病是否有关,随机调查了一些中年人的情况,具体数据如表:根据表中数据得到${K^2}=\frac{{775×{{(20×450-5×300)}^2}}}{25×750×320×455}$≈15.968,因为K2≥10.828,则断定秃发与心脏病有关系,那么这种判断出错的可能性为( )附表:
| P(K2≥k) | 0.050 | 0.010 | 0.001 |
| k | 3.841 | 6.635 | 10.828 |
| A. | 0.1 | B. | 0.05 | C. | 0.01 | D. | 0.001 |
分析 根据观测值K2,对照临界值得出结论.
解答 解:根据表中数据得到${K^2}=\frac{{775×{{(20×450-5×300)}^2}}}{25×750×320×455}$≈15.968,
因为K2≥10.828,对照临界值得;
判断秃发与心脏病有关系,这种判断出错的可能性为0.001.
故选:D.
点评 本题考查了对立性检验的应用问题,是基础题.
练习册系列答案
相关题目
2.已知向量$\overrightarrow{a}$=(3,-1),向量$\overrightarrow{b}$=(-1,2),则(2$\overrightarrow{a}+\overrightarrow{b}$)•$\overrightarrow{a}$=( )
| A. | 15 | B. | 14 | C. | 5 | D. | -5 |
9.函数f(x)=x2-lnx的单调递减区间是( )
| A. | $({0,\frac{{\sqrt{2}}}{2}}]$ | B. | $[{\frac{{\sqrt{2}}}{2},+∞})$ | C. | $({-∞,-\frac{{\sqrt{2}}}{2}}]$,$({0,\frac{{\sqrt{2}}}{2}}]$ | D. | $[{-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}}]$ |