题目内容
11.分析 设切去的正方形边长为x,无盖方底盒子的容积为V,则V=(a-2x)2x=$\frac{1}{4}(a-2x)(a-2x)×4x$,由此利用均值定理能求出当盒子的容积最大时,切去的正方形的边长.
解答 解:设切去的正方形边长为x,无盖方底盒子的容积为V,
则V=(a-2x)2x=$\frac{1}{4}(a-2x)(a-2x)×4x$
≤$\frac{1}{4}[\frac{(a-2x)+(a-2x)+4x}{3}]^{3}$=$\frac{2{a}^{3}}{27}$,
当且仅当a-2x=a-2x=4x,即当x=$\frac{a}{6}$时,不等式取等号,
此时V取最大值$\frac{2{a}^{3}}{27}$
.故当盒子的容积最大时,切去的正方形的边长x为$\frac{a}{6}$.
故答案为:$\frac{a}{6}$.
点评 本题考查当盒子的容积最大时,切去的正方形的边长的求法,是中档题,解题时要 认真审题,注意长方体的结构特征及均值定理的合理运用.
练习册系列答案
相关题目
1.已知椭圆的中心在原点,离心率e=$\frac{1}{2}$,且它的一个焦点与抛物线y2=-8x的焦点重合,则此椭圆方程为( )
| A. | $\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1 | B. | $\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{16}$=1 | C. | $\frac{{x}^{2}}{8}$+y2=1 | D. | $\frac{{x}^{2}}{4}$+y2=1 |
2.已知关于x的二次函数f(x)=ax2-2bx+1,设点(a,b)是区域$\left\{\begin{array}{l}x+y-2≤0\\ x+1≥0\\ y+1≥0\end{array}\right.$内的随机点,则函数f(x)在区间[1,+∞)上是增函数的概率是( )
| A. | $\frac{1}{2}$ | B. | $\frac{1}{8}$ | C. | $\frac{7}{16}$ | D. | $\frac{2}{3}$ |
19.某公司经营一批进价为每件4百元的商品,在市场调查时发现,此商品的销售单价x(百元)与日销售量y(件)之间有如下关系:
(1)求y关于x的回归直线方程;
(2)借助回归直线方程请你预测,销售单价为多少百元(精确到个位数)时,日利润最大?
相关公式:$\widehatb=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x•\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\widehata=\overline y-b\overline x$.
| x(百元) | 5 | 6 | 7 | 8 | 9 |
| y(件) | 10 | 8 | 9 | 6 | 1 |
(2)借助回归直线方程请你预测,销售单价为多少百元(精确到个位数)时,日利润最大?
相关公式:$\widehatb=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x•\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\widehata=\overline y-b\overline x$.
6.已知在空间四边形ABCD中,$\overrightarrow{AB}=\vec a$,$\overrightarrow{BC}=\vec b$,$\overrightarrow{AD}=\vec c$,则$\overrightarrow{CD}$=( )
| A. | $\vec a+\vec b-\vec c$ | B. | $\vec c-\vec a-\vec b$ | C. | $\vec c+\vec a-\vec b$ | D. | $\vec a+\vec b+\vec c$ |
16.以下四个命题中,错误命题的序号是( )
| A. | △ABC中,若a>b,则sinA>sinB | |
| B. | 函数y=f(x)在x=x0处取得极值的充要条件是f'(x0)=0 | |
| C. | 等差数列{an}中,a4=4,a5+a11=16则a12=12 | |
| D. | 双曲线$\frac{x^2}{16}-\frac{y^2}{9}=1$的焦点到渐近线的距离3. |
3.若直线经过两点A(m,2),B(-m,2m-1)且倾斜角为45°,则m的值为( )
| A. | $\frac{3}{4}$ | B. | 1 | C. | 2 | D. | $\frac{1}{2}$ |
20.已知P是椭圆$\frac{x^2}{5}+\frac{y^2}{4}=1$上一点,F1和F2是焦点,若$∠{F_1}P{F_2}={60^0}$,则△PF1F2的面积为( )
| A. | $5\sqrt{3}$ | B. | $4\sqrt{3}$ | C. | $\frac{{4\sqrt{3}}}{3}$ | D. | $\frac{{5\sqrt{3}}}{3}$ |
1.
2015年10月十八届五中全会决定2016年1月1日起全国统一实施全面两孩政策,为了了解适龄民众对放开生育二胎政策的态度,某市进行了一次民意调查,参与调查的100位市民中,年龄分布情况如图所示,并得到适龄民众对放开生育二胎政策的态度数据如表:
(1)填写上面的2×2列联表;
(2)根据调查数据,有多少的把握认为“生二胎与年龄有关”,说明理由;
(3)调查对象中决定生二胎的民众有六人分别来自三个不同的家庭且为父子,各自家庭都有一个约定:父亲先生二胎,然后儿子生二胎,则这个三个家庭“二胎出生的日期的先后顺序”有多少种?
参考数据:
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
| 生二胎 | 不生二胎 | 合计 | |
| 25~35岁 | 45 | 10 | 55 |
| 35~50岁 | 30 | 15 | 45 |
| 合计 | 75 | 25 | 100 |
(2)根据调查数据,有多少的把握认为“生二胎与年龄有关”,说明理由;
(3)调查对象中决定生二胎的民众有六人分别来自三个不同的家庭且为父子,各自家庭都有一个约定:父亲先生二胎,然后儿子生二胎,则这个三个家庭“二胎出生的日期的先后顺序”有多少种?
参考数据:
| P(K2>k) | 0.15 | 0.10 | 0.05 | 0.010 |
| k | 2.072 | 2.076 | 3.841 | 6.635 |