题目内容
5.已知点A(1,-2),若向量$\overrightarrow{AB}$与$\overrightarrow{a}$=(2,3)同向,|$\overrightarrow{AB}$|=2$\sqrt{13}$,则点B的坐标为( )| A. | (4,6) | B. | (-4,-6) | C. | (5,4) | D. | (-5,-4) |
分析 点B的坐标设为(m,n),运用向量的坐标运算和模的公式,以及向量共线定理解方程即可得到所求点的坐标.
解答 解:点B的坐标设为(m,n),$\overrightarrow{AB}$=(m-1,n+2),
向量$\overrightarrow{AB}$与$\overrightarrow{a}$=(2,3)同向,|$\overrightarrow{AB}$|=2$\sqrt{13}$,
即有(m-1)2+(n+2)2=52,3(m-1)=2(n+2),
解得m=5,n=4,(m=-3,n=-8舍去),
即有B(5,4),
故选:C.
点评 本题考查向量的坐标运算和向量的模的计算,以及向量共线定理的运用,考查运算能力,属于基础题.
练习册系列答案
相关题目
15.已知整数对的序列为(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,则第70数对是( )
| A. | (3,10) | B. | (4,9) | C. | (5,8) | D. | (6,7) |
16.
古代的铜钱在铸造时为了方便细加工,常将铜钱穿在一根木棒上,加工时为了较好地固定铜钱,将铜钱当中开成方孔,于是人们也将铜钱称为“孔方兄”.已知图中铜钱是直径为3cm的圆,中间方孔的边长为lcm,若在铜钱所在圆内随机取一点,则此点正好位于方孔中的概率为( )
| A. | $\frac{4}{9π}$ | B. | $\frac{9π}{4}$ | C. | $\frac{4}{3π}$ | D. | $\frac{3π}{4}$ |
13.将函数f(x)=2sin2(2x+$\frac{π}{6}$)-sin(4x+$\frac{π}{3}$)的图象向右平移$\frac{π}{12}$个单位后,得到新函数图象的对称轴方程为( )
| A. | x=$\frac{kπ}{4}$(k∈Z) | B. | x=$\frac{kπ}{4}$-$\frac{π}{8}$(k∈Z) | C. | x=$\frac{kπ}{4}$+$\frac{π}{8}$(k∈Z) | D. | x=$\frac{kπ}{4}$+$\frac{π}{16}$(k∈Z) |
20.若${∫}_{0}^{\frac{π}{6}}$cosxdx=${∫}_{0}^{a}$x2dx,则a3等于( )
| A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{3\sqrt{3}}{2}$ | D. | $\frac{3}{2}$ |