题目内容
18.已知集合A={x|x2-5x-6<0},B=$\left\{{x|\frac{3-x}{x+2}>0}\right\}$,则A∩B等于( )| A. | (-1,3) | B. | (-2,6) | C. | (2,3) | D. | (3,6) |
分析 先分别求出集合A和B,由此能求出A∩B.
解答 解:∵集合A={x|x2-5x-6<0}={x|-1<x<6},
B=$\left\{{x|\frac{3-x}{x+2}>0}\right\}$={x|-2<x<3},
∴A∩B={x|-1<x<3}=(-1,3).
故选:A.
点评 本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.
练习册系列答案
相关题目
9.在平行四边形ABCD中,O是对角线交点,下列结论正确的是( )
| A. | $\overrightarrow{AB}=\overrightarrow{CD},\overrightarrow{BC}=\overrightarrow{AD}$ | B. | $\overrightarrow{BO}+\overrightarrow{OD}=\overrightarrow{AD}-\overrightarrow{AB}$ | C. | $\overrightarrow{AD}+\overrightarrow{OD}=\overrightarrow{OA}$ | D. | $\overrightarrow{AD}+\overrightarrow{DC}+\overrightarrow{CB}=\overrightarrow{BA}$ |
13.用反证法证明命题:“自然数a,b,c中恰有一个是偶数”时,要做的假设是( )
| A. | a,b,c中至少有两个偶数 | |
| B. | a,b,c中至少有两个偶数或都是奇数 | |
| C. | a,b,c都是奇数 | |
| D. | a,b,c都是偶数 |
3.在△ABC中,角A,B,C所对的边分别为a,b,c.若角B是A,C的等差中项,且不等式-x2+8x-12>0的解集为{x|a<x<c},则△ABC的面积等于( )
| A. | $\sqrt{3}$ | B. | 2$\sqrt{3}$ | C. | 3$\sqrt{3}$ | D. | 4$\sqrt{3}$ |
8.已知某盒中有10个灯泡,其中有8个是正品,2个是次品.现需要从中取出1个正品.若每次只取出1个灯泡,取出后不放回,直到取出2个正品为止.设ξ为摸取的次数,则P(ξ=4)=( )
| A. | $\frac{4}{15}$ | B. | $\frac{1}{15}$ | C. | $\frac{28}{45}$ | D. | $\frac{14}{45}$ |