题目内容

已知f(x)=ax2+bx+c,(0<2a<b),?x∈R,f(x)≥0恒成立,则
f(1)
f(0)-f(-1)
的最小值为
 
考点:二次函数的性质
专题:函数的性质及应用
分析:由二次函数的性质得c≥
b2
4a
,代入化简
f(1)
f(0)-f(-1)
得:
f(1)
f(0)-f(-1)
4+4•
b
a
+(
b
a
)2
4•
b
a
-4
,设t=
b
a
,由0<2a<b得t>2,利用基本不等式的性质就能求得最小值.
解答: 解:因为?x∈R,f(x)=ax2+bx+c≥0恒成立,0<2a<b,
所以
0<2a<b
△=b2-4ac≤0
,得b2≤4ac,
又0<2a<b,所以c≥
b2
4a

所以
f(1)
f(0)-f(-1)
=
a+b+c
c-(a-b+c)

=
a+b+c
b-a
a+b+
b2
4a
b-a
=
4a2+4ab+b2
4a(b-a)
=
4a2+4ab+b2
4ab-4a2
=
4+4•
b
a
+(
b
a
)2
4•
b
a
-4

设t=
b
a
,由0<2a<b得,t>2,
f(1)
f(0)-f(-1)
4+4t+t2
4(t-1)
=
(t-1)2+6(t-1)+9
4(t-1)
=
1
4
[(t-1)+
9
t-1
+6]≥
1
4
×(6+6)
=3,
当且仅当t-1=
9
t-1
时取等号,此时t=4,
f(1)
f(0)-f(-1)
取最小值是3,
故答案为:3.
点评:本题主要考查二次函数的性质,基本不等式的应用,以及换元法,式子的变形是解题的关键和难点,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网