题目内容

13.在直角梯形ABCD中,∠A=90°,AD∥BC,BC=2AD,△ABD的面积为2,若$\overrightarrow{DE}$=$\frac{1}{2}$$\overrightarrow{EC}$,BE⊥DC,则$\overrightarrow{DA}$$•\overrightarrow{DC}$的值为(  )
A.-2B.-2$\sqrt{2}$C.2D.2$\sqrt{2}$

分析 如图建立平面直角坐标系,设AD=m,则AD=$\frac{4}{m}$,由BE⊥DC,∴$\overrightarrow{BE}•\overrightarrow{CD}=-\frac{4}{3}{m}^{2}+\frac{8}{3m}×\frac{4}{m}=0$,⇒m即可.

解答 解:如图建立平面直角坐标系,设AD=m,则AD=$\frac{4}{m}$,
∴A(0,$\frac{4}{m}$),D(m,$\frac{4}{m}$),C(2m,0)
$\overrightarrow{BC}=(2m,0)$,$\overrightarrow{CD}=(-m,\frac{4}{m})$,$\overrightarrow{BE}=\overrightarrow{BC}+\overrightarrow{CE}=\overrightarrow{BC}+\frac{2}{3}\overrightarrow{CD}$=($\frac{4m}{3},\frac{8}{3m}$)'
∵BE⊥DC,∴$\overrightarrow{BE}•\overrightarrow{CD}=-\frac{4}{3}{m}^{2}+\frac{8}{3m}×\frac{4}{m}=0$,⇒m=$\sqrt{2}$.
∴$\overrightarrow{DA}=(-\sqrt{2},0)$,$\overrightarrow{DC}=(\sqrt{2},-2\sqrt{2})$,
则$\overrightarrow{DA}$$•\overrightarrow{DC}$的值为-$\sqrt{2}$×$\sqrt{2}$+0×$\sqrt{2}$=-2$\sqrt{2}$.
故选:B.

点评 本题考查了,向量的坐标运算,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网