ÌâÄ¿ÄÚÈÝ
ÒÑÖªÍÖÔ²C£º
+
=1£¨a£¾b£¾0£©¹ýµã£¨
£¬
£©£¬ÍÖÔ²C×óÓÒ½¹µã·Ö±ðΪF1£¬F2£¬É϶¥µãΪE£¬¡÷EF1F2ΪµÈ±ßÈý½ÇÐΣ®¶¨ÒåÍÖÔ²CÉϵĵãM£¨x0£¬y0£©µÄ¡°°éËæµã¡±ÎªN£¨
£¬
£©£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©Çótan¡ÏMONµÄ×î´óÖµ£»
£¨3£©Ö±Ïßl½»ÍÖÔ²CÓÚA¡¢BÁ½µã£¬ÈôµãA¡¢BµÄ¡°°éËæµã¡±·Ö±ðÊÇP¡¢Q£¬ÇÒÒÔPQΪֱ¾¶µÄÔ²¾¹ý×ø±êÔµãO£®ÍÖÔ²CµÄÓÒ¶¥µãΪD£¬ÊÔ̽¾¿¡÷OABµÄÃæ»ýÓë¡÷ODEµÄÃæ»ýµÄ´óС¹ØÏµ£¬²¢Ö¤Ã÷£®
| x2 |
| a2 |
| y2 |
| b2 |
| 3 |
| ||
| 2 |
| x0 |
| a |
| y0 |
| b |
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©Çótan¡ÏMONµÄ×î´óÖµ£»
£¨3£©Ö±Ïßl½»ÍÖÔ²CÓÚA¡¢BÁ½µã£¬ÈôµãA¡¢BµÄ¡°°éËæµã¡±·Ö±ðÊÇP¡¢Q£¬ÇÒÒÔPQΪֱ¾¶µÄÔ²¾¹ý×ø±êÔµãO£®ÍÖÔ²CµÄÓÒ¶¥µãΪD£¬ÊÔ̽¾¿¡÷OABµÄÃæ»ýÓë¡÷ODEµÄÃæ»ýµÄ´óС¹ØÏµ£¬²¢Ö¤Ã÷£®
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺Բ׶ÇúÏßÖеÄ×îÖµÓ뷶ΧÎÊÌâ
·ÖÎö£º£¨1£©ÓÉÒÑÖª
£¬ÓÉ´ËÄÜÇó³öÍÖÔ²CµÄ·½³Ì£®
£¨2£©ÉèkOM=
=k£¨k£¾0£©£¬ÓÚÊÇkON=
£¬ÓÉ´ËÀûÓþùÖµ¶¨ÀíÄÜÇó³ötan¡ÏMONµÄ×î´óÖµ£®
£¨3£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÔòP(
£¬
)£¬ Q(
£¬
)£®µ±Ö±ÏßlµÄбÂÊ´æÔÚʱ£¬Éè·½³ÌΪy=kx+m£¬ÓÉ
µÃ£º£¨3+4k2£©x2+8kmx+4£¨m2-3£©=0£¬ÓÉ´ËÇó³öS¡÷OAB=
|AB|d=
£»µ±Ö±ÏßlµÄбÂʲ»´æÔÚʱ£¬Éè·½³ÌΪx=m£¨-2£¼m£¼2£©ÁªÁ¢ÍÖÔ²·½³ÌµÃ£ºy2=
£¬ÓÉ´ËÇó³ö¡÷OABµÄÃæ»ýÊǶ¨Öµ
£¬ÓÖ¡÷ODEµÄÃæ»ýҲΪ
£¬´Ó¶øµÃµ½¡÷OABµÄÃæ»ýÓë¡÷ODEµÄÃæ»ýÏàµÈ£®
|
£¨2£©ÉèkOM=
| y0 |
| x0 |
| 2k | ||
|
£¨3£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÔòP(
| x1 |
| 2 |
| y1 | ||
|
| x2 |
| 2 |
| y2 | ||
|
|
| 1 |
| 2 |
| 3 |
| 3(4-m2) |
| 4 |
| 3 |
| 3 |
½â´ð£º
±¾Ð¡ÌâÂú·Ö£¨16·Ö£©£¨µÚ1СÌâÂú·Ö£¨4·Ö£©£¬µÚ2СÌâÂú·Ö£¨4·Ö£©£¬µÚ3СÌâÂú·Ö8·Ö£©
½â£º£¨1£©ÓÉÒÑÖª
£¬
½âµÃa2=4£¬b2=3£¬
¡àÍÖÔ²CµÄ·½³ÌΪ
+
=1¡£¨4·Ö£©
£¨2£©µ±x0y0=0ʱ£¬ÏÔÈ»tan¡ÏMON=0£¬
ÓÉÍÖÔ²¶Ô³ÆÐÔ£¬Ö»Ñо¿x0£¾0£¬y0£¾0¼´¿É£¬
ÉèkOM=
=k£¨k£¾0£©£¬ÓÚÊÇkON=
¡£¨5·Ö£©
tan¡ÏMON=
=
¡Ü
£¬
£¨µ±ÇÒ½öµ±k2=
ʱȡµÈºÅ£©£¬
¡àtan¡ÏMONµÄ×î´óֵΪ
£®¡£¨8·Ö£©
£¨3£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÔòP(
£¬
)£¬ Q(
£¬
)£»
1£©µ±Ö±ÏßlµÄбÂÊ´æÔÚʱ£¬Éè·½³ÌΪy=kx+m£¬
ÓÉ
µÃ£º£¨3+4k2£©x2+8kmx+4£¨m2-3£©=0£»
ÓÐ
¢Ù¡£¨10·Ö£©
ÓÉÒÔPQΪֱ¾¶µÄÔ²¾¹ý×ø±êÔµãO¿ÉµÃ£º3x1x2+4y1y2=0£»
ÕûÀíµÃ£º(3+4k2)x1x2+4mk(x1+x2)+4m2=0¢Ú
½«¢Ùʽ´úÈë¢ÚʽµÃ£º3+4k2=2m2£¬¡£¨12·Ö£©
¡ß3+4k2£¾0£¬¡àm2£¾0£¬¡÷=48m2£¾0£¬
ÓÖµãOµ½Ö±Ïßy=kx+mµÄ¾àÀëd=
¡à|AB|=
|x1-x2|=
•
=
•
=
•
ËùÒÔS¡÷OAB=
|AB|d=
¡£¨14·Ö£©
2£©µ±Ö±ÏßlµÄбÂʲ»´æÔÚʱ£¬Éè·½³ÌΪx=m£¨-2£¼m£¼2£©
ÁªÁ¢ÍÖÔ²·½³ÌµÃ£ºy2=
£»
´úÈë3x1x2+4y1y2=0µÃ3m2-
=0£»
m=¡À
£¬y=¡À
£¬S¡÷OAB=
|AB|d=
|m||y1-y2|=
£¬
×ÛÉÏ£º¡÷OABµÄÃæ»ýÊǶ¨Öµ
ÓÖ¡÷ODEµÄÃæ»ýҲΪ
£¬
¡à¡÷OABµÄÃæ»ýÓë¡÷ODEµÄÃæ»ýÏàµÈ£®¡£¨16·Ö£©
½â£º£¨1£©ÓÉÒÑÖª
|
½âµÃa2=4£¬b2=3£¬
¡àÍÖÔ²CµÄ·½³ÌΪ
| x2 |
| 4 |
| y2 |
| 3 |
£¨2£©µ±x0y0=0ʱ£¬ÏÔÈ»tan¡ÏMON=0£¬
ÓÉÍÖÔ²¶Ô³ÆÐÔ£¬Ö»Ñо¿x0£¾0£¬y0£¾0¼´¿É£¬
ÉèkOM=
| y0 |
| x0 |
| 2k | ||
|
tan¡ÏMON=
| ||||
1+
|
2-
| ||||
|
2-
| ||||
2
|
£¨µ±ÇÒ½öµ±k2=
| ||
| 2 |
¡àtan¡ÏMONµÄ×î´óֵΪ
2-
| ||||
2
|
£¨3£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÔòP(
| x1 |
| 2 |
| y1 | ||
|
| x2 |
| 2 |
| y2 | ||
|
1£©µ±Ö±ÏßlµÄбÂÊ´æÔÚʱ£¬Éè·½³ÌΪy=kx+m£¬
ÓÉ
|
ÓÐ
|
ÓÉÒÔPQΪֱ¾¶µÄÔ²¾¹ý×ø±êÔµãO¿ÉµÃ£º3x1x2+4y1y2=0£»
ÕûÀíµÃ£º(3+4k2)x1x2+4mk(x1+x2)+4m2=0¢Ú
½«¢Ùʽ´úÈë¢ÚʽµÃ£º3+4k2=2m2£¬¡£¨12·Ö£©
¡ß3+4k2£¾0£¬¡àm2£¾0£¬¡÷=48m2£¾0£¬
ÓÖµãOµ½Ö±Ïßy=kx+mµÄ¾àÀëd=
| |m| | ||
|
¡à|AB|=
| 1+k2 |
| 1+k2 |
4
| ||||
| 3+4k2 |
=
| 1+k2 |
4
| ||
| 3+4k2 |
| 1+k2 |
4
| ||
| 2m2 |
ËùÒÔS¡÷OAB=
| 1 |
| 2 |
| 3 |
2£©µ±Ö±ÏßlµÄбÂʲ»´æÔÚʱ£¬Éè·½³ÌΪx=m£¨-2£¼m£¼2£©
ÁªÁ¢ÍÖÔ²·½³ÌµÃ£ºy2=
| 3(4-m2) |
| 4 |
´úÈë3x1x2+4y1y2=0µÃ3m2-
| 3(4-m2) |
| 4 |
m=¡À
2
| ||
| 5 |
2
| ||
| 5 |
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
×ÛÉÏ£º¡÷OABµÄÃæ»ýÊǶ¨Öµ
| 3 |
ÓÖ¡÷ODEµÄÃæ»ýҲΪ
| 3 |
¡à¡÷OABµÄÃæ»ýÓë¡÷ODEµÄÃæ»ýÏàµÈ£®¡£¨16·Ö£©
µãÆÀ£º±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÕýÇеÄ×î´óÖµµÄÇ󷨣¬¿¼²éÁ½¸öÈý½ÇÐÎÃæ»ýµÄÅжϣ¬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâµãµ½Ö±ÏߵľàÀ빫ʽºÍÏÒ³¤¹«Ê½µÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿