题目内容

14.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:
总计
爱好402060
不爱好203050
总计6050110
其中${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
附表
P(K2≥k)0.0500.0100.001
k3,8416.63510.828
问能否有99%以上的把握认为爱好该项运动与性别有关?

分析 根据条件中所给的观测值,同题目中节选的观测值表进行检验,得到观测值对应的结果,得到结论有99%以上的把握认为“爱好该项运动与性别有关”.

解答 解:由K2=$\frac{110×(40×30-20×20)^{2}}{60×50×60×50}$≈7.822>6.635,
∴有99%以上的把握认为爱好该项运动与性别有关.

点评 本题考查独立性检验的应用,考查对于观测值表的认识,这种题目一般运算量比较大,主要要考查运算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网