题目内容
已知y=f(x)的定义域为[1,4],f(1)=2,f(2)=3.当x∈[1,2]时,f(x)的图象为线段;当x∈[2,4]时,f(x)的图象为二次函数图象的一部分,且顶点为(3,1).
(1)求f(x)的解析式;
(2)求f(x)的值域.
(1)求f(x)的解析式;
(2)求f(x)的值域.
考点:函数解析式的求解及常用方法,函数的值域
专题:函数的性质及应用
分析:(1)当x∈[1,2]时f(x)的图象为线段,由此能求出x∈[2,4]时,f(x)的图象为二次函数的一部分,且顶点为(3,1),由此能求出f(x)=2(x-3)2+1.
(2)当x∈[1,2],2≤f(x)≤3,当x∈[2,4],1≤f(x)≤3,由此能求出f(x)的值域.
(2)当x∈[1,2],2≤f(x)≤3,当x∈[2,4],1≤f(x)≤3,由此能求出f(x)的值域.
解答:
解:(1)当x∈[1,2]时f(x)的图象为线段,
设f(x)=ax+b,又有f(1)=2,f(2)=3
∵a+b=2,2a+b=3,
解得a=1,b=1,f(x)=x+1,
当x∈[2,4]时,f(x)的图象为二次函数的一部分,
且顶点为(3,1),
设f(x)=a(x-3)2+1,又f(2)=3,
所以代入得a+1=3,a=2,f(x)=2(x-3)2+1.
(2)当x∈[1,2],2≤f(x)≤3,
当x∈[2,4],1≤f(x)≤3,
所以1≤f(x)≤3.
故f(x)的值域为[1,3].
设f(x)=ax+b,又有f(1)=2,f(2)=3
∵a+b=2,2a+b=3,
解得a=1,b=1,f(x)=x+1,
当x∈[2,4]时,f(x)的图象为二次函数的一部分,
且顶点为(3,1),
设f(x)=a(x-3)2+1,又f(2)=3,
所以代入得a+1=3,a=2,f(x)=2(x-3)2+1.
(2)当x∈[1,2],2≤f(x)≤3,
当x∈[2,4],1≤f(x)≤3,
所以1≤f(x)≤3.
故f(x)的值域为[1,3].
点评:本题考查函数的解析式和函数的值域的求法,解题时要认真审题,注意函数性质的合理运用.
练习册系列答案
相关题目