题目内容

等比数列{an}中,已知a1=2,a4=16.
(1)求数列{an}的通项公式及前n项和Sn
(2)记bn=log2an,求{
1
bnbn+1
}的前n项和Tn
考点:数列的求和,等比数列的性质
专题:等差数列与等比数列
分析:(1)设等比数列{an}的公比为q,由已知条件得2q3=16,由此能求出数列{an}的通项公式及前n项和Sn
(2)由bn=log2an=n,得
1
bnbn+1
=
1
n(n+1)
=
1
n
-
1
n+1
,由此利用裂项求和法能求出{
1
bnbn+1
}的前n项和Tn
解答: 解:(1)设等比数列{an}的公比为q,
∵a1=2,a4=16,∴2q3=16,解得q=2,
an=2•2n-1=2n
Sn=
2(1-2n)
1-2
=2n+1-2.(6分)
(2)∵bn=log2anan=2n,∴bn=n(8分),
1
bnbn+1
=
1
n(n+1)
=
1
n
-
1
n+1
,(10分)
∴Tn=1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1

=1-
1
n+1
.(12分)
点评:本题考查数列的通项公式和前n项和公式的求法,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网