题目内容

6.已知角α的终边经过点P(-3,4).
(1)求$\frac{sin(π-α)+cos(-α)}{tan(π+α)}$的值;     
 (2)求$\frac{1}{2}$sin2α+cos2α+1的值.

分析 (1)利用任意角的三角函数的定义求得sinα、cosα、tanα的值,再利用诱导公式求得要求式子的值.
(2)利用二倍角公式,求得要求式子的值.

解答 解:(1)由角α的终边经过点P(-3,4),可得sinα=$\frac{4}{5}$,cosα=-$\frac{3}{5}$,tanα=-$\frac{4}{3}$,
∴∴$\frac{sin(π-α)+cos(-α)}{tan(π+α)}$=$\frac{sinα+cosα}{tanα}$=$\frac{\frac{4}{5}-\frac{3}{5}}{-\frac{4}{3}}$=-$\frac{3}{20}$.
(2)$\frac{1}{2}$sin2α+cos2α+1=sinαcosα+2cos2α=$\frac{4}{5}•(-\frac{3}{5})$+2•$\frac{9}{25}$=$\frac{6}{25}$.

点评 本题主要考查任意角的三角函数的定义,诱导公式的应用,二倍角公式,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网