题目内容

已知函数f(x)的定义域为(-2,2),导函数为f′(x)=x2+cosx且f(0)=0,则满足f(1+x)+f(x2-x)>0的实数x的集合是
 
考点:导数的运算
专题:导数的概念及应用
分析:由导函数可求原函数f(x),判断函数f(x)单调性和奇偶性,利用奇偶性将不等式f(x-2)+f(x2-2x)>0转化成f(x-2)>f(2x-x2),利用单调性去掉函数符号f 即可解得所求,注意自变量本身范围.
解答: 解:∵f′(x)=x2+cosx,知f(x)=
1
3
x3+sinx+c,而f(0)=0,∴c=0.
即f(x)=
1
3
x3+sinx,易知此函数是奇函数,且在整个区间单调递增,
因为f′(x)=1+cosx在x∈(0,2)恒大于0,
根据奇函数的性质可得出,在其对应区间上亦是单调递增的.
由 f(1+x)+f(x2-x)>0 可得 f(1+x)>f(x-x2),
1+x>x-x2
-2<1+x<2
-2<x-x2<2

解得-1<x<1.
故实数x的集合是:(-1,1)
故答案为:(-1,1)
点评:本题主要考查了函数的单调性与导数的关系,以及函数的单调性和奇偶性,同时考查了计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网