题目内容
已知Sn是数列{an}的前n项和,an>0,且Sn=
(n∈N*)
(Ⅰ)求证数列{an}是等差数列;
(Ⅱ)设数列{bn}满足bn=
,求数列{bn}的前n项和.
| an2+an |
| 2 |
(Ⅰ)求证数列{an}是等差数列;
(Ⅱ)设数列{bn}满足bn=
| 1 |
| Sn |
考点:数列的求和,等差数列的性质
专题:等差数列与等比数列
分析:(Ⅰ)由已知条件推导出an2-an-an-12+an-1=0,从则得到(an-an-1-1)(an+an-1)=0,由此能证明{an}是首项为1公差为1的等差数列.
(Ⅱ)由{an}是首项为1公差为1的等差数列,得Sn=
,bn=
=
=2(
-
),由此利用裂项求和法能求出数列{bn}的前n项和.
(Ⅱ)由{an}是首项为1公差为1的等差数列,得Sn=
| n(n+1) |
| 2 |
| 1 |
| Sn |
| 2 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
解答:
解:(Ⅰ)∵Sn=
(n∈N*),
∴2Sn=an+an2,
当n≥2时,有an=Sn-Sn-1=
-
,
化简得到:an2-an-an-12+an-1=0,
∴(an-an-1-1)(an+an-1)=0
∵an>0,∴an-an-1-1=0,
∴an=an-1+1,
又a1=S1=
,解得a1=1,
∴{an}是首项为1公差为1的等差数列.
(Ⅱ)∵{an}是首项为1公差为1的等差数列,
∴Sn=
,bn=
=
=2(
-
),
设数列{bn}的前n项和为Tn,
则Tn=2(1-
+
-
+…+
-
)
=2(1-
)
=
.
| an2+an |
| 2 |
∴2Sn=an+an2,
当n≥2时,有an=Sn-Sn-1=
| an2+an |
| 2 |
| an-12+an-1 |
| 2 |
化简得到:an2-an-an-12+an-1=0,
∴(an-an-1-1)(an+an-1)=0
∵an>0,∴an-an-1-1=0,
∴an=an-1+1,
又a1=S1=
| a12+a1 |
| 2 |
∴{an}是首项为1公差为1的等差数列.
(Ⅱ)∵{an}是首项为1公差为1的等差数列,
∴Sn=
| n(n+1) |
| 2 |
| 1 |
| Sn |
| 2 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
设数列{bn}的前n项和为Tn,
则Tn=2(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=2(1-
| 1 |
| n+1 |
=
| 2n |
| n+1 |
点评:本题考查等差数列的证明,考查数列的通项公式的求法,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目