题目内容

20.某互联网理财平台为增加平台活跃度决定举行邀请好友拿奖励活动,规则是每邀请一位好友在该平台注册,并购买至少1万元的12月定期,邀请人可获得现金及红包奖励,现金奖励为被邀请人理财金额的1%,且每邀请一位最高现金奖励为300元,红包奖励为每邀请一位奖励50元.假设甲邀请到乙、丙两人,且乙、丙两人同意在该平台注册,并进行理财,乙、丙两人分别购买1万元、2万元、3万元的12月定期的概率如表:
理财金额1万元2万元3万元
乙理财相应金额的概率$\frac{1}{3}$$\frac{1}{3}$$\frac{1}{3}$
丙理财相应金额的概率$\frac{1}{2}$$\frac{1}{3}$$\frac{1}{6}$
(1)求乙、丙理财金额之和不少于5万元的概率;
(2)若甲获得奖励为X元,求X的分布列与数学期望.

分析 (1)根据古典概型的概率公式,计算乙、丙理财金额之和不少于5万元的概率值;
(2)根据X的所有可能取值,计算对应的概率值,
写出随机变量X的分布列,计算数学期望值.

解答 解:(1)设乙、丙理财金额分别为ξ万元、η万元,
则乙、丙理财金额之和不少于5万元的概率为
P(ξ+η≥5)=P(ξ=2)P(η=3)+P(ξ=3)P(η=2)+P(ξ=3)P(η=2)
=$\frac{1}{3}$×$\frac{1}{6}$+$\frac{1}{3}$×$\frac{1}{3}$+$\frac{1}{3}$×$\frac{1}{6}$=$\frac{2}{9}$;---------(4分)
(2)X的所有可能的取值为300,400,500,600,700;
P(X=300)=P(ξ=1)P(η=1)=$\frac{1}{3}$×$\frac{1}{2}$=$\frac{1}{6}$,
P(X=400)=P(ξ=1)P(η=2)+P(ξ=2)P(η=1)=$\frac{1}{3}$×$\frac{1}{3}$+$\frac{1}{3}$×$\frac{1}{2}$=$\frac{5}{18}$,
P(X=500)=P(ξ=1)P(η=3)+P(ξ=3)•P(η=1)+P(ξ=2)P(η=2)=$\frac{1}{3}$×$\frac{1}{6}$+$\frac{1}{3}$×$\frac{1}{2}$+$\frac{1}{3}$×$\frac{1}{3}$=$\frac{1}{3}$,
P(X=600)=P(ξ=2)P(η=3)+P(ξ=3)P(η=2)=$\frac{1}{3}$×$\frac{1}{6}$+$\frac{1}{3}$×$\frac{1}{3}$=$\frac{1}{6}$,
P(X=700)=P(ξ=3)P(η=3)=$\frac{1}{3}$×$\frac{1}{6}$=$\frac{1}{18}$,
所以X的分布列为

X300400500600700
P$\frac{1}{6}$$\frac{5}{18}$$\frac{1}{3}$$\frac{1}{6}$$\frac{1}{18}$
(10分)
数学期望为E(X)=300×$\frac{1}{6}$+400×$\frac{5}{18}$+500×$\frac{1}{3}$+600×$\frac{1}{6}$+700×$\frac{1}{18}$=$\frac{1400}{3}$.----------------(12分)

点评 本题考查了离散型随机变量的分布列与数学期望的计算问题,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网