题目内容
5.函数f(x)=lnx-2x的单调递增区间为( )| A. | (-∞,2) | B. | $(-∞,\frac{1}{2})$ | C. | $(0,\frac{1}{2})$ | D. | $(\frac{1}{2},+∞)$ |
分析 求出原函数的导函数,由导函数大于0求解x的范围得答案.
解答 解:由f(x)=lnx-2x,得
$f′(x)=\frac{1}{x}-2=\frac{1-2x}{x}$(x>0).
由f′(x)>0,得$\frac{1-2x}{x}>0$,得x$<\frac{1}{2}$.
∴函数f(x)=lnx-2x的单调递增区间为(0,$\frac{1}{2}$).
故选:C.
点评 本题考查利用导数研究函数的单调性,明确导函数的符号与原函数单调性间的关系是关键,是基础题.
练习册系列答案
相关题目
16.若$\left\{\begin{array}{l}{sinθ<0}\\{tanθ>0}\end{array}\right.$ 则角θ所在的象限是( )
| A. | 第四象限 | B. | 第三象限 | C. | 第二象限 | D. | 第一象限 |
20.某互联网理财平台为增加平台活跃度决定举行邀请好友拿奖励活动,规则是每邀请一位好友在该平台注册,并购买至少1万元的12月定期,邀请人可获得现金及红包奖励,现金奖励为被邀请人理财金额的1%,且每邀请一位最高现金奖励为300元,红包奖励为每邀请一位奖励50元.假设甲邀请到乙、丙两人,且乙、丙两人同意在该平台注册,并进行理财,乙、丙两人分别购买1万元、2万元、3万元的12月定期的概率如表:
(1)求乙、丙理财金额之和不少于5万元的概率;
(2)若甲获得奖励为X元,求X的分布列与数学期望.
| 理财金额 | 1万元 | 2万元 | 3万元 |
| 乙理财相应金额的概率 | $\frac{1}{3}$ | $\frac{1}{3}$ | $\frac{1}{3}$ |
| 丙理财相应金额的概率 | $\frac{1}{2}$ | $\frac{1}{3}$ | $\frac{1}{6}$ |
(2)若甲获得奖励为X元,求X的分布列与数学期望.
17.在复平面中,下列复数中所对应的点在第三象限的是( )
| A. | -1+2i | B. | -1-2i | C. | 3+2i | D. | 3-2i |