题目内容
7.当复数$z=\frac{{{m^2}+m-6}}{m}+({m^2}-2m)i$为纯虚数时,则实数m的值为( )| A. | m=2 | B. | m=-3 | C. | m=2或m=-3 | D. | m=1或m=-3 |
分析 由复数z为纯虚数可得实部等于0且虚部不等于0,求解即可得答案.
解答 解:∵复数$z=\frac{{{m^2}+m-6}}{m}+({m^2}-2m)i$为纯虚数,
∴$\left\{\begin{array}{l}{\frac{{m}^{2}+m-6}{m}=0}\\{{m}^{2}-2m≠0}\end{array}\right.$,解得m=-3.
故选:B.
点评 本题考查了复数的基本概念,是基础题.
练习册系列答案
相关题目
18.若n∈N*,且n≤19,则(20-n)(21-n)…(100-n)等于( )
| A. | $A_{100-n}^{80}$ | B. | $A_{100-n}^{20-n}$ | C. | $A_{100-n}^{81}$ | D. | $A_{20-n}^{81}$ |
15.双曲线$\frac{x^2}{m}-\frac{y^2}{n}=1$(mn≠0)离心率为$\sqrt{3}$,其中一个焦点与抛物线y2=12x的焦点重合,则mn的值为( )
| A. | $3\sqrt{2}$ | B. | $3\sqrt{3}$ | C. | 18 | D. | 27 |
2.随着网络的发展,人们可以在网络上购物、玩游戏、聊天、导航等,所以人们对上网流量的需求越来越大.某电信运营商推出一款新的“流量包”套餐.为了调查不同年龄的人是否愿意选择此款“流量包”套餐,随机抽取50个用户,按年龄分组进行访谈,统计结果如表.
(Ⅰ)若在第2、3、4组愿意选择此款“流量包”套餐的人中,用分层抽样的方法抽取12人,则各组应分别抽取多少人?
(Ⅱ)若从第5组的被调查者访谈人中随机选取2人进行追踪调查,求2人中至少有1人愿意选择此款“流量包”套餐的概率.
(Ⅲ)按以上统计数据填写下面2×2列联表,并判断以48岁为分界点,能否在犯错误不超过1%的前提下认为,是否愿意选择此款“流量包”套餐与人的年龄有关?
参考公式:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(d+b)}$,其中:n=a+b+c+d.
| 组号 | 年龄 | 访谈人数 | 愿意使用 |
| 1 | [18,28) | 4 | 4 |
| 2 | [28,38) | 9 | 9 |
| 3 | [38,48) | 16 | 15 |
| 4 | [48,58) | 15 | 12 |
| 5 | [58,68) | 6 | 2 |
(Ⅱ)若从第5组的被调查者访谈人中随机选取2人进行追踪调查,求2人中至少有1人愿意选择此款“流量包”套餐的概率.
(Ⅲ)按以上统计数据填写下面2×2列联表,并判断以48岁为分界点,能否在犯错误不超过1%的前提下认为,是否愿意选择此款“流量包”套餐与人的年龄有关?
| 年龄不低于48岁的人数 | 年龄低于48岁的人数 | 合计 | |
| 愿意使用的人数 | |||
| 不愿意使用的人数 | |||
| 合计 |
| P(k2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
16.△ABC 中,若$\overrightarrow{AC}•\overrightarrow{BC}-\overrightarrow{AB}•\overrightarrow{AC}$=0,则△ABC 是( )
| A. | 直角三角形 | B. | 等腰三角形 | C. | 等边三角形 | D. | 钝角三角形 |