题目内容
18.若n∈N*,且n≤19,则(20-n)(21-n)…(100-n)等于( )| A. | $A_{100-n}^{80}$ | B. | $A_{100-n}^{20-n}$ | C. | $A_{100-n}^{81}$ | D. | $A_{20-n}^{81}$ |
分析 根据题意,由排列数公式分析可得(20-n)(21-n)…(100-n)=$\frac{(100-n)!}{(20-n)!}$=${A}_{100}^{81}$,即可得答案.
解答 解:根据题意,(20-n)(21-n)…(100-n)=$\frac{(100-n)!}{(20-n)!}$=${A}_{100}^{81}$,
故选:C.
点评 本题考查排列数公式,关键是掌握排列数公式的形式.
练习册系列答案
相关题目
8.广告投入对商品的销售额有较大影响.某电商对连续5个年度的广告费和销售额进行统计,得到统计数据如下表(单位:万元)
由上表可得回归方程为$\stackrel{∧}{y}$=10.2x+$\stackrel{∧}{a}$,据此模型,预测广告费为8万元时的销售额约为( )
| 广告费x | 2 | 3 | 4 | 5 | 6 |
| 销售额y | 29 | 41 | 50 | 59 | 71 |
| A. | 90.8 | B. | 72.4 | C. | 98.2 | D. | 111.2 |
9.下面(A)(B)(C)(D)为四个平面图形:
(1)数出每个平面图形的交点数、边数、区域数,并将下表补充完整:
(2)观察表格,若记一个平面图形的交点数、边数、区域数分别为E、F、G,试猜想E、F、G之间的数量关系(不要求证明).
(1)数出每个平面图形的交点数、边数、区域数,并将下表补充完整:
| 交点数 | 边数 | 区域数 | |
| (A) | 4 | 5 | 2 |
| (B) | 5 | 8 | |
| (C) | 12 | 5 | |
| (D) | 15 |
3.某中学教务处采用系统抽样方法,从学校高一年级全体1000名学生中抽50名学生做学习状况问卷调查.现将1000名学生从1到1000进行编号.在第一组中随机抽取一个号,如果抽到的是17号,则第8组中应取的号码是( )
| A. | 177 | B. | 417 | C. | 157 | D. | 367 |
7.当复数$z=\frac{{{m^2}+m-6}}{m}+({m^2}-2m)i$为纯虚数时,则实数m的值为( )
| A. | m=2 | B. | m=-3 | C. | m=2或m=-3 | D. | m=1或m=-3 |
8.
若函数y=Asin(ωx+φ)$({A>0,ω>0,|φ|<\frac{π}{2}})$在一个周期内的图象如图所示,且在$y轴上的截距为\sqrt{2}$,M,N分别是这段图象的最高点和最低点,
则$\overrightarrow{ON}在\overrightarrow{OM}$方向上的投影为( )
则$\overrightarrow{ON}在\overrightarrow{OM}$方向上的投影为( )
| A. | $\frac{{\sqrt{29}}}{29}$ | B. | $\frac{{\sqrt{5}}}{5}$ | C. | -$\frac{{\sqrt{29}}}{29}$ | D. | $-\frac{{\sqrt{5}}}{5}$ |