题目内容
17.已知函数f0(x)=$\frac{x}{{e}^{x}}$,设fn+1(x)为fn(x)的导函数.f1(x)=[f0(x)]′=$\frac{1-x}{{e}^{x}}$,
f2(x)=[f1(x)]′=$\frac{x-2}{{e}^{x}}$,
…,
根据以上结果,推断f2017(x)=$\frac{2017-x}{e^x}$.
分析 根据导数得运算法则,观察结果,即可得到结论
解答 解:函数f0(x)=$\frac{x}{{e}^{x}}$,设fn+1(x)为fn(x)的导函数.
f1(x)=[f0(x)]′=$\frac{1-x}{{e}^{x}}$
f2(x)=[f1(x)]′=$\frac{x-2}{{e}^{x}}$=-$\frac{2-x}{{e}^{x}}$
f3(x)=[f3(x)]′=$\frac{3-x}{{e}^{x}}$,
…,
根据以上结果,推断f2017(x)=$\frac{2017-x}{e^x}$,
故答案为:$\frac{2017-x}{e^x}$
点评 本题考查了导数的运算法则和归纳推理的问题,属于基础题
练习册系列答案
相关题目
8.广告投入对商品的销售额有较大影响.某电商对连续5个年度的广告费和销售额进行统计,得到统计数据如下表(单位:万元)
由上表可得回归方程为$\stackrel{∧}{y}$=10.2x+$\stackrel{∧}{a}$,据此模型,预测广告费为8万元时的销售额约为( )
| 广告费x | 2 | 3 | 4 | 5 | 6 |
| 销售额y | 29 | 41 | 50 | 59 | 71 |
| A. | 90.8 | B. | 72.4 | C. | 98.2 | D. | 111.2 |
12.下列结论正确的是( )
| A. | 当x>0且x≠1时,lgx$+\frac{1}{lgx}$≥2 | B. | 6$-x-\frac{4}{x}$的最大值是2 | ||
| C. | $\frac{{x}^{2}+5}{\sqrt{{x}^{2}+4}}$的最小值是2 | D. | 当x∈(0,π)时,sinx$+\frac{4}{sinx}$≥5 |
2.命题p“若x=2,则(x-2)(x+1)=0”,其否命题记为q,则下列命题中,真命题是( )
| A. | ¬p | B. | q | C. | p∧q | D. | p∨q |
9.下面(A)(B)(C)(D)为四个平面图形:
(1)数出每个平面图形的交点数、边数、区域数,并将下表补充完整:
(2)观察表格,若记一个平面图形的交点数、边数、区域数分别为E、F、G,试猜想E、F、G之间的数量关系(不要求证明).
(1)数出每个平面图形的交点数、边数、区域数,并将下表补充完整:
| 交点数 | 边数 | 区域数 | |
| (A) | 4 | 5 | 2 |
| (B) | 5 | 8 | |
| (C) | 12 | 5 | |
| (D) | 15 |
7.当复数$z=\frac{{{m^2}+m-6}}{m}+({m^2}-2m)i$为纯虚数时,则实数m的值为( )
| A. | m=2 | B. | m=-3 | C. | m=2或m=-3 | D. | m=1或m=-3 |