题目内容
圆与圆的位置关系是( )
A.内切 B.外离 C.内含 D.相交
A
已知向量=(3,-4),=(6,-3),=(5-m,-3-m).若∠ABC为锐角,则实数m的取值范围 .
过抛物线的焦点作倾斜角为直线,直线与抛物线相交与,两点,则弦的长是 .
设分别是定义在上的奇函数和偶函数,当时,,且,则不等式的解集是( )
A. B.
C. D.
在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线,过点P(-2,-4)的直线 的参数方程为:(t为参数),直线与曲线C相交于M,N两点.
(Ⅰ)写出曲线C的直角坐标方程和直线的普通方程;
(Ⅱ)若成等比数列,求a的值.
设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:
①m⊥α,n∥α,则m⊥n;
②若αγ=m,βγ=n,m∥n ,则α∥β;
③若α∥β,β∥γ, m⊥α,则m⊥γ;
④若α⊥γ,β⊥γ,则α∥β.
其中正确命题的序号是 ( )
A.①和③ B.②和③ C.③和④ D.①和④
如图,三棱柱中,侧棱,且侧棱和底面边长均为2,是的中点.
(1)求证:;
(2)求证:;
如图,正方体ABCDA1B1C1D1的棱长为4,M为BD1的中点,N在A1C1上,且|A1N|=3|NC1|,则MN的长为 .
已知双曲线和椭圆有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为 .