题目内容
10.分析 建立如图所示的坐标系,求出$\overrightarrow{B{D}_{1}}$=(-1,1,$\sqrt{2}$),$\overrightarrow{{A}_{1}D}$=(0,1,-$\sqrt{2}$),即可求出异面直线BD1与A1D所成角的余弦值.
解答
解:建立如图所示的坐标系,则B(1,0,0),D1(0,1,$\sqrt{2}$),
A1(0,0,$\sqrt{2}$),D(0,1,0),
∴$\overrightarrow{B{D}_{1}}$=(-1,1,$\sqrt{2}$),$\overrightarrow{{A}_{1}D}$=(0,1,-$\sqrt{2}$),
∴异面直线BD1与A1D所成角的余弦值等于|$\frac{1-2}{\sqrt{1+1+2}•\sqrt{1+2}}$|=$\frac{\sqrt{3}}{6}$,
故答案为$\frac{\sqrt{3}}{6}$.
点评 本题考查异面直线BD1与A1D所成角的余弦值,考查向量知识的运用,属于中档题.
练习册系列答案
相关题目
8.设集合A={x|x2-x-6<0},B={x|-3≤x≤1},则A∪B等于( )
| A. | [-2,1) | B. | (-2,1] | C. | [-3,3) | D. | (-3,3] |
5.已知角α(0<α<$\frac{π}{2}$)的终边经过点(cos2β,1+sin3βcosβ-cos3βsinβ),($\frac{π}{2}$<β<π,且β≠$\frac{3π}{4}$),则α-β=( )
| A. | -$\frac{7π}{4}$ | B. | -$\frac{3π}{4}$ | C. | -$\frac{π}{4}$ | D. | $\frac{5π}{4}$ |
15.已知函数y=f(x)的图象关于直线x=-1对称,且当x∈(0,+∞)时,有f(x)=$\frac{1}{x}$,当x∈(-∞,-2)时,f(x)的解析式为( )
| A. | f(x)=-$\frac{1}{x}$ | B. | f(x)=-$\frac{1}{x-2}$ | C. | f(x)=$\frac{1}{x+2}$ | D. | f(x)=-$\frac{1}{x+2}$ |