题目内容

10.如图,直四棱柱ABCD-A1B1C1D1的底面是边长为1的正方形,侧棱长AA1=$\sqrt{2}$,则异面直线BD1与A1D所成角的余弦值等于$\frac{\sqrt{3}}{6}$.

分析 建立如图所示的坐标系,求出$\overrightarrow{B{D}_{1}}$=(-1,1,$\sqrt{2}$),$\overrightarrow{{A}_{1}D}$=(0,1,-$\sqrt{2}$),即可求出异面直线BD1与A1D所成角的余弦值.

解答 解:建立如图所示的坐标系,则B(1,0,0),D1(0,1,$\sqrt{2}$),
A1(0,0,$\sqrt{2}$),D(0,1,0),
∴$\overrightarrow{B{D}_{1}}$=(-1,1,$\sqrt{2}$),$\overrightarrow{{A}_{1}D}$=(0,1,-$\sqrt{2}$),
∴异面直线BD1与A1D所成角的余弦值等于|$\frac{1-2}{\sqrt{1+1+2}•\sqrt{1+2}}$|=$\frac{\sqrt{3}}{6}$,
故答案为$\frac{\sqrt{3}}{6}$.

点评 本题考查异面直线BD1与A1D所成角的余弦值,考查向量知识的运用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网