题目内容
11.已知直线2x+ay-1=0与直线ax+(2a-1)y+3=0垂直,则a=( )| A. | -$\frac{1}{2}$ | B. | 0 | C. | -$\frac{1}{2}$或0 | D. | -2或0 |
分析 对a分类讨论,利用两条直线相互垂直的条件即可得出.
解答 解:a=$\frac{1}{2}$时两条直线不垂直,舍去.
a=0时,两条直线方程分别化为:2x-1=0,-y+3=0,满足两条直线相互垂直.
a$≠\frac{1}{2}$,0时,由两条直线垂直可得:-$\frac{2}{a}$×$(-\frac{a}{2a-1})$=-1,解得a=-$\frac{1}{2}$.
综上可得:a=-$\frac{1}{2}$,0.
故选:C.
点评 本题考查了相互垂直的直线斜率之间的关系、分类讨论方法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
19.
某校高二奥赛班N名学生的物理测评成绩(满分120分)分布直方图如图,已知分数在100~110的学生数有21人.
(Ⅰ)求总人数N和分数在110~115分的人数n;
(Ⅱ)现准备从分数在110~115分的n名学生(女生占$\frac{1}{3}$)中任选2人,求其中恰好含有一名女生的概率;
(Ⅲ)为了分析某个学生的学习状态,对其下一阶段的学习提供指导性建议,对他前7次考试的数学成绩x(满分150分),物理成绩y进行分析,下面是该生7次考试的成绩.
已知该生的物理成绩y与数学成绩x是线性相关的,若该生的数学成绩达到130分,请你估计他的物理成绩大约是多少?
附:对于一组数据(u1,v1),(u2,v2),…,(un,vn),其回归线v=α+βu的斜率和截距的最小二乘估计分别为$\hat β=\frac{{\sum_{i=1}^n{({u_i}-\overline u)({v_i}-\overline v)}}}{{\sum_{i=1}^n{{{({u_i}-\overline u)}^2}}}},\;\hat α=\overline v-\hat β\overline u$.
(Ⅰ)求总人数N和分数在110~115分的人数n;
(Ⅱ)现准备从分数在110~115分的n名学生(女生占$\frac{1}{3}$)中任选2人,求其中恰好含有一名女生的概率;
(Ⅲ)为了分析某个学生的学习状态,对其下一阶段的学习提供指导性建议,对他前7次考试的数学成绩x(满分150分),物理成绩y进行分析,下面是该生7次考试的成绩.
| 数学 | 88 | 83 | 117 | 92 | 108 | 100 | 112 |
| 物理 | 94 | 91 | 108 | 96 | 104 | 101 | 106 |
附:对于一组数据(u1,v1),(u2,v2),…,(un,vn),其回归线v=α+βu的斜率和截距的最小二乘估计分别为$\hat β=\frac{{\sum_{i=1}^n{({u_i}-\overline u)({v_i}-\overline v)}}}{{\sum_{i=1}^n{{{({u_i}-\overline u)}^2}}}},\;\hat α=\overline v-\hat β\overline u$.