题目内容
设数列{an}的前n项的和为Sn,且{
}是等差数列,已知a1=1,
+
+
=12.
(Ⅰ)求{an}的通项公式an;
(Ⅱ)当n≥2时,an+1+
≥λ恒成立,求λ的取值范围.
| Sn |
| n |
| S2 |
| 2 |
| S3 |
| 3 |
| S4 |
| 4 |
(Ⅰ)求{an}的通项公式an;
(Ⅱ)当n≥2时,an+1+
| λ |
| an |
考点:数列与不等式的综合,等差数列的性质
专题:等差数列与等比数列
分析:(Ⅰ)由已知得
=4,从而
=
n-
,Sn=
n2-
n,由此能求出an=3n-2.
(Ⅱ)由已知得3n+1+
≥λ,从而
≥λ,设bn=
,由bn的最小值为b2=
,能求出λ≤
.
| S3 |
| 3 |
| Sn |
| n |
| 3 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
(Ⅱ)由已知得3n+1+
| λ |
| 3n-2 |
| (3n+1)(3n-2) |
| 3(n-1) |
| (3n+1)(3n-2) |
| 3(n-1) |
| 28 |
| 3 |
| 28 |
| 3 |
解答:
解:(Ⅰ)∵{
}是等差数列,a1=1,
+
+
=12.
∴3×
=12,∴
=4,
∴
=
n-
,
∴Sn=
n2-
n,
∴an=Sn-Sn-1=3n-2,n≥2,
当n=1时也成立,
∴an=3n-2.(6分)
(Ⅱ)∵n≥2时,an+1+
≥λ恒成立,
∴3n+1+
≥λ,∴
≥λ,(10分)
设bn=
,
bn+1-bn=
-
=
>0,
∴bn的最小值为b2=
,
∴λ≤
.(14分)
| Sn |
| n |
| S2 |
| 2 |
| S3 |
| 3 |
| S4 |
| 4 |
∴3×
| S3 |
| 3 |
| S3 |
| 3 |
∴
| Sn |
| n |
| 3 |
| 2 |
| 1 |
| 2 |
∴Sn=
| 3 |
| 2 |
| 1 |
| 2 |
∴an=Sn-Sn-1=3n-2,n≥2,
当n=1时也成立,
∴an=3n-2.(6分)
(Ⅱ)∵n≥2时,an+1+
| λ |
| an |
∴3n+1+
| λ |
| 3n-2 |
| (3n+1)(3n-2) |
| 3(n-1) |
设bn=
| (3n+1)(3n-2) |
| 3(n-1) |
bn+1-bn=
| (3n+1)(3n+4) |
| 3n |
| (3n+1)(3n-2) |
| 3(n-1) |
| (3n+1)(3n-2) |
| 3n(n-1) |
∴bn的最小值为b2=
| 28 |
| 3 |
∴λ≤
| 28 |
| 3 |
点评:本题考查数列的通项公式的求法,考查实数的取值范围的求法,是中档题,解题时要认真审题,注意等差数列的性质的合理运用.
练习册系列答案
相关题目