题目内容

函数f(x)=
x
1+x
(x>0),数列{an}和{bn}满足:a1=
1
2
,an+1=f(an),函数y=f(x)的图象在点(n,f(n))(n∈N*)处的切线在y轴上的截距为bn
(1)求数列{an}的通项公式;
(2)若数列{
bn
an2
-
λ
an
}的项中仅
b5
a52
-
λ
a5
最小,求λ的取值范围;
(3)若函数g(x)=
x
1-x
,令函数h(x)=[f(x)+g(x)]•
1-x2
1+x2
,0<x<1,数列{xn}满足:x1=
1
2
,0<xn<1且xn+1=h(xn)其中n∈N*.证明:
(x1-x2)2
x1x2
+
(x2-x3)2
x2x3
+…
(xn+1-xn)2
xnxn+1
2
+1
8
考点:数列与不等式的综合
专题:等差数列与等比数列
分析:(1)由已知得
1
an+1
-
1
an
=1
,由此能求出an=
1
n+1

(2)由已知得y=f(x)在点(n,f(n))处的切线方程为y-
n
n+1
=
1
(1+n)2
(x-n),从而
bn
an2
-
λ
an
=n2-λ(n+1)=(n-
λ
2
2-λ-
λ2
4
,由此能求出λ的取值范围.
(3)h(x)=
2x
1+x2
,0<x<1,从而xn+1-xn=xn(1-xn)•
1+xn
xn2+1
2
+1
8
,由此能证明
(x1-x2)2
x1x2
+
(x2-x3)2
x2x3
+…
(xn+1-xn)2
xnxn+1
=
2
+1
8
(2-
1
xn+1
)
2
+1
8
解答: (本小题满分14分)
(1)解:∵an+1=f(an)=
an
1+an

1
an+1
-
1
an
=1

{
1
an
}
是以2为首项,1为公差的等差数列,
故an=
1
n+1
.…(3分)
(2)解:∵f(x)=
x
1+x
(x>0),∴f′(x)=
1
(x+1)2

∴y=f(x)在点(n,f(n))处的切线方程为y-
n
n+1
=
1
(1+n)2
(x-n),
令x=0,得bn=
n2
(1+n)2

bn
an2
-
λ
an
=n2-λ(n+1)=(n-
λ
2
2-λ-
λ2
4

∵仅当n=5时,取得最小值,∴4.5<
λ
2
<5.5,
∴λ的取值范围为(9,11).…(6分)
(3)证明:h(x)=[f(x)+g(x)]•
1-x2
1+x2

=(
x
1+x
+
x
1-x
)•
1-x2
1+x2

=
2x
1+x2
,0<x<1,
∴xn+1-xn=xn(1-xn)•
1+xn
xn2+1

又∵0<xnxn
∴1>xn+1>xn>…>x2
1
2
,…(8分)
xn+1-xn=xn(1-xn)•
1+xn
xn2+1
1
4
1
xn+1+
2
xn+1
-2

1
4
2
2
2
-2
=
2
+1
8

(xn+1-xn)2
xnxn+1
=
xn+1-xn
xnxn+1
(xn+1-xn)
=(xn+1-xn)(
1
xn
-
1
xn+1
)
2
+1
8
(
1
xn
-
1
xn+1
)

(x1-x2)2
x1x2
+
(x2-x3)2
x2x3
+…+
(xn+1-xn)2
xnxn+n

2
+1
8
1
x1
-
1
x2
+
1
x2
-
1
x3
+…+
1
xn
-
1
xn+1

=
2
+1
8
(x1-
1
xn+1
)

=
2
+1
8
(2-
1
xn+1
),…(12分)
1
2
xn+1<1
,∴1<
1
xn+1
<2
,∴0<2-
1
xn+1
<1,
(x1-x2)2
x1x2
+
(x2-x3)2
x2x3
+…
(xn+1-xn)2
xnxn+1
=
2
+1
8
(2-
1
xn+1
)
2
+1
8
.…(14分)
点评:本题考查数列{an}的通项公式的求法,考查λ的取值范围的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网