题目内容
函数f(x)=
(x>0),数列{an}和{bn}满足:a1=
,an+1=f(an),函数y=f(x)的图象在点(n,f(n))(n∈N*)处的切线在y轴上的截距为bn.
(1)求数列{an}的通项公式;
(2)若数列{
-
}的项中仅
-
最小,求λ的取值范围;
(3)若函数g(x)=
,令函数h(x)=[f(x)+g(x)]•
,0<x<1,数列{xn}满足:x1=
,0<xn<1且xn+1=h(xn)其中n∈N*.证明:
+
+…
<
.
| x |
| 1+x |
| 1 |
| 2 |
(1)求数列{an}的通项公式;
(2)若数列{
| bn |
| an2 |
| λ |
| an |
| b5 |
| a52 |
| λ |
| a5 |
(3)若函数g(x)=
| x |
| 1-x |
| 1-x2 |
| 1+x2 |
| 1 |
| 2 |
| (x1-x2)2 |
| x1x2 |
| (x2-x3)2 |
| x2x3 |
| (xn+1-xn)2 |
| xnxn+1 |
| ||
| 8 |
考点:数列与不等式的综合
专题:等差数列与等比数列
分析:(1)由已知得
-
=1,由此能求出an=
.
(2)由已知得y=f(x)在点(n,f(n))处的切线方程为y-
=
(x-n),从而
-
=n2-λ(n+1)=(n-
)2-λ-
,由此能求出λ的取值范围.
(3)h(x)=
,0<x<1,从而xn+1-xn=xn(1-xn)•
<
,由此能证明
+
+…
=
(2-
)<
.
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| n+1 |
(2)由已知得y=f(x)在点(n,f(n))处的切线方程为y-
| n |
| n+1 |
| 1 |
| (1+n)2 |
| bn |
| an2 |
| λ |
| an |
| λ |
| 2 |
| λ2 |
| 4 |
(3)h(x)=
| 2x |
| 1+x2 |
| 1+xn |
| xn2+1 |
| ||
| 8 |
| (x1-x2)2 |
| x1x2 |
| (x2-x3)2 |
| x2x3 |
| (xn+1-xn)2 |
| xnxn+1 |
| ||
| 8 |
| 1 |
| xn+1 |
| ||
| 8 |
解答:
(本小题满分14分)
(1)解:∵an+1=f(an)=
,
∴
-
=1,
∴{
}是以2为首项,1为公差的等差数列,
故an=
.…(3分)
(2)解:∵f(x)=
(x>0),∴f′(x)=
,
∴y=f(x)在点(n,f(n))处的切线方程为y-
=
(x-n),
令x=0,得bn=
,
∴
-
=n2-λ(n+1)=(n-
)2-λ-
,
∵仅当n=5时,取得最小值,∴4.5<
<5.5,
∴λ的取值范围为(9,11).…(6分)
(3)证明:h(x)=[f(x)+g(x)]•
=(
+
)•
=
,0<x<1,
∴xn+1-xn=xn(1-xn)•
,
又∵0<xnxn,
∴1>xn+1>xn>…>x2>
,…(8分)
xn+1-xn=xn(1-xn)•
≤
•
<
•
=
,
∴
=
(xn+1-xn)=(xn+1-xn)(
-
)<
(
-
),
∴
+
+…+
<
(
-
+
-
+…+
-
)
=
(x1-
)
=
(2-
),…(12分)
∵
<xn+1<1,∴1<
<2,∴0<2-
<1,
∴
+
+…
=
(2-
)<
.…(14分)
(1)解:∵an+1=f(an)=
| an |
| 1+an |
∴
| 1 |
| an+1 |
| 1 |
| an |
∴{
| 1 |
| an |
故an=
| 1 |
| n+1 |
(2)解:∵f(x)=
| x |
| 1+x |
| 1 |
| (x+1)2 |
∴y=f(x)在点(n,f(n))处的切线方程为y-
| n |
| n+1 |
| 1 |
| (1+n)2 |
令x=0,得bn=
| n2 |
| (1+n)2 |
∴
| bn |
| an2 |
| λ |
| an |
| λ |
| 2 |
| λ2 |
| 4 |
∵仅当n=5时,取得最小值,∴4.5<
| λ |
| 2 |
∴λ的取值范围为(9,11).…(6分)
(3)证明:h(x)=[f(x)+g(x)]•
| 1-x2 |
| 1+x2 |
=(
| x |
| 1+x |
| x |
| 1-x |
| 1-x2 |
| 1+x2 |
=
| 2x |
| 1+x2 |
∴xn+1-xn=xn(1-xn)•
| 1+xn |
| xn2+1 |
又∵0<xnxn,
∴1>xn+1>xn>…>x2>
| 1 |
| 2 |
xn+1-xn=xn(1-xn)•
| 1+xn |
| xn2+1 |
| 1 |
| 4 |
| 1 | ||
xn+1+
|
<
| 1 |
| 4 |
| 2 | ||
2
|
| ||
| 8 |
∴
| (xn+1-xn)2 |
| xnxn+1 |
| xn+1-xn |
| xnxn+1 |
| 1 |
| xn |
| 1 |
| xn+1 |
| ||
| 8 |
| 1 |
| xn |
| 1 |
| xn+1 |
∴
| (x1-x2)2 |
| x1x2 |
| (x2-x3)2 |
| x2x3 |
| (xn+1-xn)2 |
| xnxn+n |
<
| ||
| 8 |
| 1 |
| x1 |
| 1 |
| x2 |
| 1 |
| x2 |
| 1 |
| x3 |
| 1 |
| xn |
| 1 |
| xn+1 |
=
| ||
| 8 |
| 1 |
| xn+1 |
=
| ||
| 8 |
| 1 |
| xn+1 |
∵
| 1 |
| 2 |
| 1 |
| xn+1 |
| 1 |
| xn+1 |
∴
| (x1-x2)2 |
| x1x2 |
| (x2-x3)2 |
| x2x3 |
| (xn+1-xn)2 |
| xnxn+1 |
| ||
| 8 |
| 1 |
| xn+1 |
| ||
| 8 |
点评:本题考查数列{an}的通项公式的求法,考查λ的取值范围的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目
已知f(
)=
,则f′(x)等于( )
| 1 |
| x |
| x |
| 1+x |
A、
| ||
B、-
| ||
C、
| ||
D、-
|