ÌâÄ¿ÄÚÈÝ

16£®Éèk¡Ù0£¬Èôº¯Êýy1=£¨x-k£©2+2kºÍy2=-£¨x+k£©2-2kµÄͼÏóÓëyÖáÒÀ´Î½»ÓÚA£¬BÁ½µã£¬º¯Êýy1£¬y2µÄͼÏóµÄ¶¥µã·Ö±ðΪC£¬D£®
£¨1£©µ±k=1ʱ£¬ÇëÔÚͬһֱ½Ç×ø±êϵÖУ¬·Ö±ð»­³öº¯Êýy1£¬y2µÄ²Ýͼ£¬²¢¸ù¾ÝͼÐΣ¬Ð´³öy1£¬y2Á½Í¼ÏóµÄλÖùØÏµ£»
£¨2£©µ±-2£¼k£¼0ʱ£¬ÇóÏß¶ÎAB³¤µÄȡֵ·¶Î§£»
£¨3£©A£¬B£¬C£¬DËĵ㹹³ÉµÄͼÐÎÊÇ·ñΪƽÐÐËıßÐΣ¿ÈôÊÇÆ½ÐÐËıßÐΣ¬ÔòÊÇ·ñ¹¹³ÉÁâÐλò¾ØÐΣ¿ÈôÄܹ¹³ÉÁâÐλò¾ØÐΣ¬ÇëÖ±½Óд³ökµÄÖµ£®

·ÖÎö £¨1£©È¡k=1¿ÉµÃÁ½º¯Êý½âÎöʽ£¬²¢×÷³ö²Ýͼ£»
£¨2£©Óɺ¯Êý½âÎöʽÇó³öA£¬B£¬C£¬DµÄ×ø±ê£¬½øÒ»²½ÇóµÃAB£¬ÀûÓöþ´Îº¯ÊýÇóµÃ·¶Î§£»
£¨3£©·Ö±ðÇó³öAC¡¢BD¡¢AD¡¢BCËùÔÚÖ±ÏßµÄбÂÊ£¬ÓÉбÂÊÏàµÈ¿ÉµÃA£¬B£¬C£¬DËĵ㹹³ÉµÄËıßÐÎADBCÊÇÆ½ÐÐËıßÐΣ¬ÔÙÓɶԽÇÏßбÂÊ·ÖÎö¿ÉÖªËıßÐÎADBC²»Äܹ¹³ÉÁâÐΣ®

½â´ð ½â£º£¨1£©Èçͼ£¬${y}_{1}=£¨x-1£©^{2}+2£¬{y}_{2}=-£¨x+1£©^{2}-2$£»
£¨2£©ÔÚº¯Êýy1=£¨x-k£©2+2kºÍy2=-£¨x+k£©2-2kÖУ¬
·Ö±ðÈ¡x=0£¬µÃ${y}_{1}={k}^{2}+2k£¬{y}_{2}=-{k}^{2}-2k$£¬
¡àA£¨0£¬k2+2k£©£¬B£¨0£¬-k2-2k£©£¬
¡à|AB|=|k2+2k+k2+2k|=2|k2+2k|£¬
¡ß-2£¼k£¼0£¬¡àk2+2k¡Ê[-1£¬0£©£¬
Ôò|AB|=2|k2+2k|¡Ê£¨0£¬2]£»
£¨3£©ÓÉÌâÒâ¿ÉµÃ£ºA£¨0£¬k2+2k£©£¬B£¨0£¬-k2-2k£©£¬
C£¨k£¬2k£©£¬D£¨-k£¬-2k£©£¬
Ôò${k}_{AC}=\frac{{k}^{2}}{-k}=-k£¬{k}_{BD}=\frac{-{k}^{2}}{k}=-k$£¬${k}_{AD}=\frac{{k}^{2}+4k}{k}=k+4£¬{k}_{BC}=\frac{-{k}^{2}-4k}{-k}=k+4$£¬
¡àA£¬B£¬C£¬DËĵ㹹³ÉµÄËıßÐÎADBCÊÇÆ½ÐÐËıßÐΣ¬
¡ß${k}_{CD}=\frac{4k}{2k}=2$£¬ÇÒABµÄбÂʲ»´æÔÚ£¬
¡à²»Äܹ¹³ÉÁâÐΣ®

µãÆÀ ±¾Ì⿼²éº¯ÊýµÄͼÏ󣬿¼²éÁ˺¯Êý½âÎöʽµÄÇó½â¼°³£Ó÷½·¨£¬¿¼²éÁËÊýÐνáºÏµÄ½âÌâ˼Ïë·½·¨£¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø