题目内容

14.若A、B、C为△ABC的三内角,且其对边分别为a、b、c.若向量$\overrightarrow{m}$=(cos2$\frac{A}{2}$,cos$\frac{A}{2}$-1),向量$\overrightarrow{n}$=(1,cos$\frac{A}{2}$+1)且2$\overrightarrow{m}$•$\overrightarrow{n}$=-1.
(1)求A的值;         
(2)若a=2$\sqrt{3}$,三角形面积S=$\sqrt{3}$,求b+c的值.

分析 (1)直接由已知结合向量数量积的坐标运算求得cosA=-$\frac{1}{2}$,再结合A∈(0,π)求得A值;
(2)利用三角形的面积公式结合余弦定理列式求得b+c的值.

解答 解:(1)∵向量$\overrightarrow{m}$=(cos2$\frac{A}{2}$,cos$\frac{A}{2}$-1),向量$\overrightarrow{n}$=(1,cos$\frac{A}{2}$+1)且2$\overrightarrow{m}$•$\overrightarrow{n}$=-1.
∴$co{s}^{2}\frac{A}{2}-si{n}^{2}\frac{A}{2}=-\frac{1}{2}$,
得cosA=-$\frac{1}{2}$,又A∈(0,π),∴A=$\frac{2π}{3}$;
(2)由${S}_{△ABC}=\frac{1}{2}bcsinA=\frac{1}{2}bcsin\frac{2π}{3}=\sqrt{3}$,得bc=4.
又由余弦定理得:${a}^{2}={b}^{2}+{c}^{2}-2bccos\frac{2π}{3}={b}^{2}+{c}^{2}+bc$.
∴16=(b+c)2
∴b+c=4.

点评 本题考查平面向量的数量积运算,考查了余弦定理在解三角形中的应用,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网