题目内容
设x,y满足约束条件
,则z=3x+y的最大值是( )
|
| A、0 | B、4 | C、5 | D、6 |
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用z的几何意义,利用数形结合,即可得到结论.
解答:
解:作出不等式组对应的平面区域如图:
由z=3x+y得y=-3x+z,
平移直线y=-3x+z,由图象可知当直线y=-3x+z,经过点A时,
直线的截距最大,此时z最大.
由
,解得
,
即A(2,0),此时zmax=3×2=6,
故选:D.
由z=3x+y得y=-3x+z,
平移直线y=-3x+z,由图象可知当直线y=-3x+z,经过点A时,
直线的截距最大,此时z最大.
由
|
|
即A(2,0),此时zmax=3×2=6,
故选:D.
点评:本题主要考查线性规划的应用,利用数形结合是解决本题的关键.
练习册系列答案
相关题目
实数x,y满足不等式组
(k为常数),且x+3y的最大值为12,则实数k=( )
|
| A、9 | B、-9 | C、-12 | D、12 |
三棱锥P-ABC的四个顶点均在同一球面上,其中△ABC是正三角形,PA⊥平面ABC,PA=2AB=6,则该球的体积为( )
A、16
| ||
B、32
| ||
| C、48π | ||
D、64
|