题目内容
3.函数f(x)=sin4x+acos4x图象的一条对称轴方程是直线x=$\frac{π}{6}$,则a=( )| A. | 1 | B. | $\frac{\sqrt{3}}{3}$ | C. | -$\frac{\sqrt{3}}{3}$ | D. | $\sqrt{3}$ |
分析 利用辅助角公式化积为f(x)=$\sqrt{{a}^{2}+1}sin(4x+θ)$,(tanθ=a),把x=$\frac{π}{6}$代入,可得4×$\frac{π}{6}$+θ=k$π+\frac{π}{2}$,k∈Z,求出θ值,则a可求.
解答 解:f(x)=sin4x+acos4x=$\sqrt{{a}^{2}+1}$($\frac{1}{\sqrt{{a}^{2}+1}}sin4x+\frac{a}{\sqrt{{a}^{2}+1}}cos4x$)
=$\sqrt{{a}^{2}+1}sin(4x+θ)$,(tanθ=a),
∵函数f(x)=sin4x+acos4x图象的一条对称轴方程是直线x=$\frac{π}{6}$,
∴4×$\frac{π}{6}$+θ=k$π+\frac{π}{2}$,k∈Z,则θ=kπ-$\frac{π}{6}$,k∈Z.
∴a=tan(kπ-$\frac{π}{6}$)=-tan$\frac{π}{6}$=-$\frac{\sqrt{3}}{3}$.
故选:C.
点评 本题考查两角和与差的正弦函数,考查了y=Asin(ωx+φ)型函数的图象与性质,是中档题.
练习册系列答案
相关题目
15.已知函数f(x)(x∈R),满足f(-x)=-f(x),f(3-x)=f(x),则f(435)=( )
| A. | 0 | B. | 3 | C. | -3 | D. | 不确定 |
12.1+a1+a2+…+an的值是( )
| A. | $\frac{1-{a}^{n}}{1-a}$ | B. | $\frac{1-{a}^{n+1}}{1-a}$ | C. | 1+n或$\frac{1-{a}^{n}}{1-a}$ | D. | 1+n或$\frac{1-{a}^{n+1}}{1-a}$ |