题目内容
设函数f(x)=g(x)+x+lnx,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处的切线方程为( )
A.y=4x B.y=4x﹣8 C.y=2x+2 D.![]()
A
【解析】
试题分析:据曲线在切点处的导数值为曲线切线的斜率,求g′(1)进一步求出f′(1),由点斜式求出切线方程.
【解析】
由已知g′(1)=2,而
,
所以f′(1)=g′(1)+1+1=4,即切线斜率为4,
又g(1)=3,
故f(1)=g(1)+1+ln1=4,
故曲线y=f(x)在点(1,f(1))处的切线方程为y﹣4=4(x﹣1),即y=4x,
故选A.
练习册系列答案
相关题目