题目内容
某班举行数、理、化三科竞赛,每人至少参加一科,已知参加数学竞赛的有27人,参加物理竞赛的有25人,参加化学竞赛的有27人,其中参加数学、物理两科的有10人,参加物理、化学两科的有7人,参加数学、化学两科的有11人,而参加数、理、化三科的有4人,则全班共有 人.
考点:Venn图表达集合的关系及运算
专题:集合
分析:把文字语言转化成符号语言,借助于韦恩图的直观性把它表示出来,再根据集合中元素的互异性求出问题的解.
解答:
解析:解:设参加数学、物理、化学三科竞赛的同学组成的集合分别为A、B、C,由题意可知A、B、C三集合中元素个数分别为27、25、27,A∩B、B∩C、A∩C、A∩B∩C的元素个数分别为10、7、11、4.画出韦恩图:

可知全班人数为10+13+12+6+4+7+3=55(人),
故答案为:55.
可知全班人数为10+13+12+6+4+7+3=55(人),
故答案为:55.
点评:本题考查集合的运算,解题的关键是把文字语言转化成符号语言,借助于韦恩图的直观性把它表示出来,再根据集合中元素的互异性求出问题的解.
练习册系列答案
相关题目
下列不等式一定成立的是( )
A、lg(x2+
| ||||
B、
| ||||
| C、x2+1≥2|x|(x∈R) | ||||
D、
|
设a=
,b=log9
,c=log8
,则a,b,c之间的大小关系是( )
| 1 |
| 4 |
| 8 |
| 5 |
| 3 |
| A、a>b>c |
| B、a>c>b |
| C、c>a>b |
| D、c>b>a |
函数f(x)=logax+x-2有两个零点x1,x2,其中x1∈(0,1),x2∈(2,3),则实数a的取值范围是( )
A、(0,
| ||
B、(
| ||
| C、(1,3) | ||
| D、(3,+∞) |
若等差数列共有2n+1项(n∈N*),且奇数项的和为44,偶数项的和为33,则项数为( )
| A、5 | B、7 | C、9 | D、11 |