题目内容
9.已知α为第二象限角.且sin2α=-$\frac{24}{25}$,则cosα-sinα的值为( )| A. | $\frac{7}{5}$ | B. | -$\frac{7}{5}$ | C. | $\frac{1}{5}$ | D. | -$\frac{1}{5}$ |
分析 由α的范围和三角函数值的符号判断出cosα-sinα的符号,由条件、平方关系、二倍角的正弦函数求出cosα-sinα的值.
解答 解:∵α为第二象限角,∴cosα-sinα<0,
∵sin2α=-$\frac{24}{25}$,
∴cosα-sinα=-$\sqrt{(cosα-sinα)^{2}}$=$-\sqrt{1-sin2α}$
=$-\sqrt{1+\frac{24}{25}}$=$-\frac{7}{5}$,
故选B.
点评 本题考查二倍角的正弦函数,平方关系,以及三角函数值的符号,属于基础题.
练习册系列答案
相关题目
17.
已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示,则下列说法错误的是( )
| A. | ω=π | |
| B. | φ=$\frac{π}{4}$ | |
| C. | f(x)的单调减区间为(2k-$\frac{1}{4}$,2k+$\frac{3}{4}$),k∈Z | |
| D. | f(x)的对称中心是(k+$\frac{1}{4}$,0),k∈Z |
14.
传承传统文化再掀热潮,央视科教频道以诗词知识竞赛为主的《中国诗词大会》火爆荧屏.将中学组和大学组的参赛选手按成绩分为优秀、良好、一般三个等级,随机从中抽取了100名选手进行调查,下面是根据调查结果绘制的选手等级人数的条形图.
(Ⅰ)若将一般等级和良好等级合称为合格等级,根据已知条件完成下面的2×2列联表,并据此资料你是否有95%的把握认为选手成绩“优秀”与文化程度有关?
注:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
(Ⅱ)若参赛选手共6万人,用频率估计概率,试估计其中优秀等级的选手人数;
(Ⅲ)在优秀等级的选手中取6名,依次编号为1,2,3,4,5,6,在良好等级的选手中取6名,依次编号为1,2,3,4,5,6,在选出的6名优秀等级的选手中任取一名,记其编号为a,在选出的6名良好等级的选手中任取一名,记其编号为b,求使得方程组$\left\{\begin{array}{l}ax+by=3\\ x+2y=2\end{array}\right.$有唯一一组实数解(x,y)的概率.
(Ⅰ)若将一般等级和良好等级合称为合格等级,根据已知条件完成下面的2×2列联表,并据此资料你是否有95%的把握认为选手成绩“优秀”与文化程度有关?
| 优秀 | 合格 | 合计 | |
| 大学组 | |||
| 中学组 | |||
| 合计 |
| P(k2≥k0) | 0.10 | 0.05 | 0.005 |
| k0 | 2.706 | 3.841 | 7.879 |
(Ⅲ)在优秀等级的选手中取6名,依次编号为1,2,3,4,5,6,在良好等级的选手中取6名,依次编号为1,2,3,4,5,6,在选出的6名优秀等级的选手中任取一名,记其编号为a,在选出的6名良好等级的选手中任取一名,记其编号为b,求使得方程组$\left\{\begin{array}{l}ax+by=3\\ x+2y=2\end{array}\right.$有唯一一组实数解(x,y)的概率.
4.已知等差数列{an}中,公差d≠0,a4=10,且a3,a6,a10成等比数列,则数列{an}前9项的和为( )
| A. | 99 | B. | 90 | C. | 84 | D. | 70 |
1.若无论实数a取何值时,直线ax+y+a+1=0与圆x2+y2-2x-2y+b=0都相交,则实数b的取值范围.( )
| A. | (-∞,2) | B. | (2,+∞) | C. | (-∞,-6) | D. | (-6,+∞) |
18.已知平面向量$\overrightarrow a,\overrightarrow b$满足$\overrightarrow b•(\overrightarrow a+\overrightarrow b)=3$,且$|\overrightarrow a|=1,|\overrightarrow b|=2$,则向量$\overrightarrow a$与$\overrightarrow b$的夹角( )
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |