ÌâÄ¿ÄÚÈÝ
12£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{lo{g}_{2}x£¨x£¾0£©}\\{|x|£¨x¡Ü0£©}\end{array}\right.$£¬º¯Êýg£¨x£©Âú×ãÒÔÏÂÈýµãÌõ¼þ£º¢Ù¶¨ÒåÓòΪR£»¢Ú¶ÔÈÎÒâx¡ÊR£¬ÓÐg£¨x£©=$\frac{1}{2}$g£¨x+2£©£»¢Ûµ±x¡Ê[-1£¬1]ʱ£¬g£¨x£©=$\sqrt{1-{x^2}}$£®Ôòº¯Êýy=f£¨x£©-g£¨x£©ÔÚÇø¼ä[-4£¬4]ÉÏÁãµãµÄ¸öÊýΪ£¨¡¡¡¡£©| A£® | 7 | B£® | 6 | C£® | 5 | D£® | 4 |
·ÖÎö µ±x¡Ê[-3£¬-1]ʱ£¬g£¨x£©=2$\sqrt{1-£¨x+2£©^{2}}$£»µ±x¡Ê[1£¬3]ʱ£¬g£¨x£©=$\frac{1}{2}\sqrt{1-£¨x-2£©^{2}}$£¬ÔÚÍ¬Ò»×ø±êϵÖУ¬×÷³öf£¨x£©£¬g£¨x£©µÄͼÏó£¬Á½¸öͼÏóÓÐ4¸ö½»µã£¬¿ÉµÃ½áÂÛ£®
½â´ð
½â£º¡ß¶ÔÈÎÒâx¡ÊR£¬ÓÐg£¨x£©=$\frac{1}{2}$g£¨x+2£©£»µ±x¡Ê[-1£¬1]ʱ£¬g£¨x£©=$\sqrt{1-{x^2}}$£¬
¡àµ±x¡Ê[-3£¬-1]ʱ£¬g£¨x£©=2$\sqrt{1-£¨x+2£©^{2}}$£»µ±x¡Ê[1£¬3]ʱ£¬g£¨x£©=$\frac{1}{2}\sqrt{1-£¨x-2£©^{2}}$£¬
ÔÚÍ¬Ò»×ø±êϵÖУ¬×÷³öf£¨x£©£¬g£¨x£©µÄͼÏó£¬Á½¸öͼÏóÓÐ4¸ö½»µã£¬
¡àº¯Êýy=f£¨x£©-g£¨x£©ÔÚÇø¼ä[-4£¬4]ÉÏÁãµãµÄ¸öÊýΪ4£¬
¹ÊÑ¡D£®
µãÆÀ ±¾Ì⿼²éº¯ÊýÁãµãµÄÅж¨£¬¿¼²éÊýÐνáºÏµÄÊýѧ˼Ï룬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
19£®ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍSnÂú×ãSn+Sm=Sn+m£¨n£¬m¡ÊN*£©ÇÒa1=5£¬Ôòa8=£¨¡¡¡¡£©
| A£® | 40 | B£® | 35 | C£® | 12 | D£® | 5 |
3£®ÃüÌâ¡°?x¡ÊR£¬x2£¾0¡±µÄ·ñ¶¨ÊÇ£¨¡¡¡¡£©
| A£® | ?x¡ÊR£¬x2¡Ü0 | B£® | $?{x_0}¡ÊR£¬{x_0}^2£¾0$ | C£® | $?{x_0}¡ÊR£¬{x_0}^2£¼0$ | D£® | $?{x_0}¡ÊR£¬{x_0}^2¡Ü0$ |
7£®
ÒÑÖªº¯Êýf£¨x£©=sin£¨¦Øx+¦Õ£©£¨¦Ø£¾0£¬0£¼¦Õ£¼¦Ð£©µÄͼÏóÈçͼËùʾ£¬½«f£¨x£©µÄͼÏóÏò×óÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»£¬µÃµ½g£¨x£©µÄͼÏó£¬Ôòº¯Êýg£¨x£©µÄ½âÎöʽΪ£¨¡¡¡¡£©
| A£® | g£¨x£©=sin2x | B£® | g£¨x£©=cos2x | C£® | $g£¨x£©=sin£¨2x+\frac{¦Ð}{6}£©$ | D£® | $g£¨x£©=sin£¨2x+\frac{2¦Ð}{3}£©$ |
17£®ÒÑÖª¼¯ºÏA={x|2x£¾1}£¬B={x|0£¼x£¼1}£¬Ôò∁AB=£¨¡¡¡¡£©
| A£® | £¨0£¬1£© | B£® | £¨0£¬1] | C£® | £¨1£¬+¡Þ£© | D£® | [1£¬+¡Þ£© |
2£®
ÒÑ֪ij¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýΪ£¨¡¡¡¡£©
| A£® | $\frac{4}{3}$+¦Ð | B£® | 4+¦Ð | C£® | $\frac{4}{3}$+2¦Ð | D£® | 4+2¦Ð |