题目内容

19.已知ω>0,设x1,x2是方程sin(ωx+$\frac{π}{3}$)=$\frac{\sqrt{3}}{2}$的两个不同的实数根,且|x2-x1|的最小值为2,则ω等于(  )
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

分析 由题意,ωx+$\frac{π}{3}$=$\frac{π}{3}$+2kπ或ωx+$\frac{π}{3}$=$\frac{2π}{3}$+2k′π,利用|x2-x1|的最小值为2,可得2ω=$\frac{π}{3}$,即可得出结论.

解答 解:∵sin(ωx+$\frac{π}{3}$)=$\frac{\sqrt{3}}{2}$,
∴ωx+$\frac{π}{3}$=$\frac{π}{3}$+2kπ或ωx+$\frac{π}{3}$=$\frac{2π}{3}$+2k′π,
∵|x2-x1|的最小值为2,
∴2ω=$\frac{π}{3}$,∴ω=$\frac{π}{6}$,
故选:D.

点评 本题考查正弦函数的图象与性质,考查学生的计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网