题目内容
17.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右顶点A作斜率为-1的直线l,该直线与双曲线的两条渐近线的交点分别为B,C.若$2\overrightarrow{AB}=\overrightarrow{BC}$,则双曲线的离心率是$\sqrt{5}$.分析 分别表示出直线l和两个渐近线的交点,进而表示出$\overrightarrow{AB}$和$\overrightarrow{BC}$,进而根据$2\overrightarrow{AB}=\overrightarrow{BC}$,求得a和b的关系,进而根据c2-a2=b2,求得a和c的关系,则离心率可得.
解答 解:过右顶点A(a,0)作斜率为-1的直线,
可得直线l:y=-x+a与渐近线l1:bx-ay=0交于B($\frac{{a}^{2}}{a+b}$,$\frac{ab}{a+b}$),
l与渐近线l2:bx+ay=0交于C($\frac{{a}^{2}}{a-b}$,-$\frac{ab}{a-b}$),
∴$\overrightarrow{AB}$=(-$\frac{ab}{a+b}$,$\frac{ab}{a+b}$),$\overrightarrow{BC}$=($\frac{2{a}^{2}b}{{a}^{2}-{b}^{2}}$,-$\frac{2{a}^{2}b}{{a}^{2}-{b}^{2}}$),
∵$2\overrightarrow{AB}=\overrightarrow{BC}$,
∴$\frac{-ab}{a+b}$=$\frac{{a}^{2}b}{{a}^{2}-{b}^{2}}$,化为b=2a,
∴c2-a2=4a2,
∴e2=$\frac{{c}^{2}}{{a}^{2}}$=5,
∴e=$\frac{c}{a}$=$\sqrt{5}$,
故答案为:$\sqrt{5}$.
点评 本题主要考查双曲线的性质:离心率和渐近线方程,考查联立直线方程求交点,以及向量的坐标运算,考查化简整理的运算能力,属于中档题.
练习册系列答案
相关题目
19.已知ω>0,设x1,x2是方程sin(ωx+$\frac{π}{3}$)=$\frac{\sqrt{3}}{2}$的两个不同的实数根,且|x2-x1|的最小值为2,则ω等于( )
| A. | $\frac{π}{2}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
5.等边△ABC在椭圆内,A是椭圆中心,B是椭圆的一个焦点,则该椭圆离心率的取值范围是( )
| A. | (0,$\sqrt{3}$-1) | B. | ($\sqrt{3}$-1,1) | C. | (0,$\frac{\sqrt{2}}{2}$) | D. | $\frac{\sqrt{2}}{2}$,1) |
9.在△ABC中,a,b,c分别是角A,B,C的对边,若(b-$\frac{6}{5}$c)sinB+csinC=asinA,则sinA=( )
| A. | $-\frac{4}{5}$ | B. | $\frac{4}{5}$ | C. | $-\frac{3}{5}$ | D. | $\frac{3}{5}$ |
6.一个棱长为4的正方体,过正方体中两条互为异面直线的棱的中点作直线,则该直线被正方体的外接球球面截在球内的线段长是( )
| A. | 2$\sqrt{11}$ | B. | 2$\sqrt{10}$ | C. | 6 | D. | 4$\sqrt{2}$ |