题目内容
1.Sn为数列{an}的前n项和,已知an>0,an2+2an=4Sn+3.(1)求{an}的通项公式;
(2)设bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,设数列{bn}前n项和Tn,且λ≤Tn对一切n∈N*都成立,试求λ的最大值.
分析 (1)由递推关系可得:(an+an-1)(an-an-1)=2(an+an-1).an>0,可得an-an-1=2(n≥2),利用等差数列的通项公式即可得出.
(2)利用“裂项求和”方法与数列的单调性即可得出.
解答 解:(1)由${a_n}^2+2{a_n}=4{S_n}+3$,①
可知${a_{n-1}}^2+2{a_{n-1}}=4{S_{n-1}}+3$,②(n≥2)
①-②得:${a_n}^2-{a_{n-1}}^2+2{a_n}-2{a_{n-1}}=4{a_n}$,
即(an+an-1)(an-an-1)=2(an+an-1).
∵an>0,∴an+an-1≠0,
∴an-an-1=2(n≥2),
∴{an}是以a1=3为首项,d=2为公差的等差数列.
∴${a_n}=2n+1(n∈{N^*})$.
(2)${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}=\frac{1}{(2n+1)(2n+3)}=\frac{1}{2}(\frac{1}{2n+1}-\frac{1}{2n+3})$.
Tn=b1+b2+…+bn=$\frac{1}{2}[(\frac{1}{3}-\frac{1}{5})+(\frac{1}{5}-\frac{1}{7})+…+(\frac{1}{2n+1}-\frac{1}{2n+3})]$=$\frac{n}{3(2n+3)}$.
∵λ≤Tn对一切n∈N*成立,∴λ≤T1.
∴$λ≤\frac{1}{15}$,即的最大值为$\frac{1}{15}$.
点评 本题考查了数列递推关系、等差数列的通项公式、“裂项求和”方法与数列的单调性,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
12.函数f(x)=$\frac{x}{1-x}$+$\sqrt{x+1}$的定义域是( )
| A. | [-1,+∞) | B. | (-∞,-1) | C. | (-∞,+∞) | D. | [-1,1)∪(1,+∞) |
16.在△ABC中,内角A,B,C所对的边分别是a,b,c,已知a=7,c=5,则$\frac{sinA}{sinC}$的值是( )
| A. | $\frac{7}{5}$ | B. | $\frac{5}{7}$ | C. | $±\frac{7}{12}$ | D. | $\frac{5}{12}$ |
13.已知集合A={x|x2-5x+4≤0},B={-1,0,1,2,3},则A∩B=( )
| A. | {-1,0,1} | B. | {0,1,2} | C. | {1,2,3} | D. | {1,2,3,4} |
11.如图,网格纸上小正方形边长为1,粗线是一个棱锥的三视图,则此棱锥的体积为( )

| A. | $\frac{8}{3}$ | B. | $\frac{4}{3}$ | C. | 4$\sqrt{3}$ | D. | 2$\sqrt{3}$ |