题目内容

17.如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O为AC的中点,PO⊥平面ABCD,M为PD的中点.
(Ⅰ)证明:PB∥平面ACM;  
(Ⅱ)求证:BC⊥PA.

分析 (I)连结OM,则由中位线定理得OM∥PB,故PB∥平面ACM;
(II)由BC⊥AC,BC⊥PO可得BC⊥平面PAC,于是BC⊥PA.

解答 证明:(I)连结OM,BD,
∵底面ABCD为平行四边形,
∴O是BD的中点,又M是PD的中点,
∴OM∥PB,又OM?平面ACM,PB?平面ACM,
∴PB∥平面ACM.
(II)AD=AC=1,∠ADC=45°,
∴AC⊥AD,即BC⊥AC.
∵PO⊥平面ABCD,BC?平面ABCD,
∴PO⊥BC,
又PO∩AC=O,PO?PAC,AC?平面PAC,
∴BC⊥平面PAC,又PA?平面PAC,
∴BC⊥PA.

点评 本题考查了线面平行,线面垂直的判定,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网