题目内容
已知向量
=(
sin(
-
),
cos
),向量
=(
sin(
+
),2sin
),函数f(x)=
•
.
(1)求函数f(x)的对称轴方程及单调递增区间;
(2)在锐角△ABC中,若f(A)=
,求cosA的值.
| a |
| 2 |
| x |
| 2 |
| π |
| 4 |
| 3 |
| x |
| 2 |
| b |
| 2 |
| x |
| 2 |
| π |
| 4 |
| x |
| 2 |
| a |
| b |
(1)求函数f(x)的对称轴方程及单调递增区间;
(2)在锐角△ABC中,若f(A)=
| 2 |
| 3 |
考点:两角和与差的正弦函数,两角和与差的余弦函数,正弦函数的单调性
专题:三角函数的求值
分析:(1)由题意可得f(x)=2sin(x-
),令x-
=kπ+
可得对称轴方程,由2kπ-
≤x-
≤2kπ+
可得单调递增区间;
(2)由(1)和条件易得sin(A-
)=
,进而可得cos(A-
)=
,代入cosA=cos[(A-
)+
]=cos(A-
)cos
-sin(A-
)sin
,化简可得.
| π |
| 6 |
| π |
| 6 |
| π |
| 2 |
| π |
| 2 |
| π |
| 6 |
| π |
| 2 |
(2)由(1)和条件易得sin(A-
| π |
| 6 |
| 1 |
| 3 |
| π |
| 6 |
2
| ||
| 3 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
解答:
解:(1)由题意可得f(x)=
•
=
sin(
-
)•
sin(
+
)+
cos
•2sin
=(sin
-cos
)(sin
+cos
)+
sinx
=
sinx-(cos2
-sin2
)
=
sinx-cosx=2sin(x-
)
令x-
=kπ+
可得x=kπ+
,k∈Z,故对称轴方程为:x=kπ+
,k∈Z,
由2kπ-
≤x-
≤2kπ+
可得2kπ-
≤x≤2kπ+
,
故单调递增区间为[2kπ-
,2kπ+
] k∈Z
(2)由(1)知f(A)=2sin(A-
)=
,∴sin(A-
)=
又0<A<
,∴cos(A-
)=
,
∴cosA=cos[(A-
)+
]
=cos(A-
)cos
-sin(A-
)sin
=
×
-
×
=
| a |
| b |
=
| 2 |
| x |
| 2 |
| π |
| 4 |
| 2 |
| x |
| 2 |
| π |
| 4 |
| 3 |
| x |
| 2 |
| x |
| 2 |
=(sin
| x |
| 2 |
| x |
| 2 |
| x |
| 2 |
| x |
| 2 |
| 3 |
=
| 3 |
| x |
| 2 |
| x |
| 2 |
=
| 3 |
| π |
| 6 |
令x-
| π |
| 6 |
| π |
| 2 |
| 2π |
| 3 |
| 2π |
| 3 |
由2kπ-
| π |
| 2 |
| π |
| 6 |
| π |
| 2 |
| π |
| 3 |
| 2π |
| 3 |
故单调递增区间为[2kπ-
| π |
| 3 |
| 2π |
| 3 |
(2)由(1)知f(A)=2sin(A-
| π |
| 6 |
| 2 |
| 3 |
| π |
| 6 |
| 1 |
| 3 |
又0<A<
| π |
| 2 |
| π |
| 6 |
2
| ||
| 3 |
∴cosA=cos[(A-
| π |
| 6 |
| π |
| 6 |
=cos(A-
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
=
2
| ||
| 3 |
| ||
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
2
| ||
| 6 |
点评:本题考查两角和与差的三角函数公式,涉及三角函数的单调性和对称性,属基础题.
练习册系列答案
相关题目
对于线性相关系数r,叙述正确的是( )
| A、r∈(-∞,+∞),|r|越大,相关程度越大,反之相关程度越小 |
| B、r∈(-∞,+∞),r越大,相关程度越大,反之相关程度越小 |
| C、|r|≤1且|r|越接近1,相关程度越大 |
| D、以上说法都不对 |
数列{an}的各项均为正数,Sn为其前n项和,对于任意的n∈N*,总有an,Sn,a2n成等差数列,又记bn=
,数列{bn}的前n项和Tn=( )
| 1 |
| a2n+1•a2n+3 |
A、
| ||
B、
| ||
C、
| ||
D、
|
函数y=5sin(
x+
)的最小正周期是( )
| 2 |
| 5 |
| π |
| 6 |
A、
| ||
B、
| ||
C、
| ||
| D、5π |
命题p:函数y=|sin(2x-
)|的最小正周期为
;命题q:函数y=cos(x-
)的图象关于x=
π对称,由下列判断正确的为( )
| π |
| 4 |
| π |
| 2 |
| π |
| 3 |
| 2 |
| 3 |
| A、?q为假 |
| B、p∧q为真 |
| C、p∨q为真 |
| D、?p∨?q为假 |