题目内容
数列{an}的各项均为正数,Sn为其前n项和,对于任意的n∈N*,总有an,Sn,a2n成等差数列,又记bn=
,数列{bn}的前n项和Tn=( )
| 1 |
| a2n+1•a2n+3 |
A、
| ||
B、
| ||
C、
| ||
D、
|
考点:数列的求和
专题:等差数列与等比数列
分析:由已知得2an=an-an-1+an2-an-12,即(an+an-1)(an-an-1-1)=0,由数列{an}的各项均为正数,得an-an-1=1,由此能求出an=n.
bn=
=
(
-
),由此利用裂项求和法求得数列{bn}的前n项和Tn.
bn=
| 1 |
| (2n+1)(2n+3) |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 2n+3 |
解答:
解:由已知得2Sn=an+an2,①
当n≥2时,2Sn-1=an-1+
,②
①-②,得2an=an-an-1+
-
,
即(an+an-1)(an-an-1-1)=0,
∵数列{an}的各项均为正数,
∴an-an-1=1,
又n=1时,2a1=a1+
,解得a1=1,
∴{an}是首项为1,公差为1的等差数列,∴an=n.
∴bn=
=
(
-
),
∴Tn=b1+b2+…+bn=
(
-
+
-
+…+
-
).
=
(
-
)=
=
.
故选C.
当n≥2时,2Sn-1=an-1+
| a | 2 n-1 |
①-②,得2an=an-an-1+
| a | 2 n |
| a | 2 n-1 |
即(an+an-1)(an-an-1-1)=0,
∵数列{an}的各项均为正数,
∴an-an-1=1,
又n=1时,2a1=a1+
| a | 2 1 |
∴{an}是首项为1,公差为1的等差数列,∴an=n.
∴bn=
| 1 |
| (2n+1)(2n+3) |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 2n+3 |
∴Tn=b1+b2+…+bn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 2n+1 |
| 1 |
| 2n+3 |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2n+3 |
| n |
| 3(2n+3) |
| n |
| 6n+9 |
故选C.
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意裂项相消法的合理运用.
练习册系列答案
相关题目
设a=sinα+cosα,b=sinβ+cosβ,且0<α<β<
,则( )
| π |
| 4 |
A、a<
| ||||||
B、a<b<
| ||||||
C、a<
| ||||||
D、
|
函数y=2sin2x+2cosx-3的最大值是( )
| A、-1 | ||
B、
| ||
C、-
| ||
| D、-5 |