ÌâÄ¿ÄÚÈÝ
9£®ÒÑÖª¶¨µãO£¨0£¬0£©£¬A£¨3£¬0£©£¬¶¯µãPµ½¶¨µãO¾àÀëÓëµ½¶¨µãAµÄ¾àÀëµÄ±ÈÖµÊÇ$\frac{1}{\sqrt{¦Ë}}$£®£¨¢ñ£©Ç󶯵ãPµÄ¹ì¼£·½³Ì£¬²¢ËµÃ÷·½³Ì±íʾµÄÇúÏߣ»
£¨¢ò£©µ±¦Ë=4ʱ£¬¼Ç¶¯µãPµÄ¹ì¼£ÎªÇúÏßD£®F£¬GÊÇÇúÏßDÉϲ»Í¬µÄÁ½µã£¬¶ÔÓÚ¶¨µãQ£¨-3£¬0£©£¬ÓÐ|QF|•|QG|=4£®ÊÔÎÊÎÞÂÛF£¬GÁ½µãµÄλÖÃÔõÑù£¬Ö±ÏßFGÄܺãºÍÒ»¸ö¶¨Ô²ÏàÇÐÂð£¿ÈôÄÜ£¬Çó³öÕâ¸ö¶¨Ô²µÄ·½³Ì£»Èô²»ÄÜ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨¢ñ£©É趯µãPµÄ×ø±êΪ£¨x£¬y£©£¬ÓÉ$\sqrt{¦Ë}$|PO|=|PA|´úÈë×ø±êÕûÀíµÃ£¨¦Ë-1£©x2+£¨¦Ë-1£©y2+6x-9=0£¬¶Ô¦Ë·ÖÀàÌÖÂۿɵã»
£¨¢ò£©µ±¦Ë=4ʱ£¬ÇúÏßDµÄ·½³ÌÊÇx2+y2+2x-3=0£¬ÔòÓÉÃæ»ýÏàµÈµÃµ½|QF|•|QG|sin¦È=d|FG|£¬ÇÒÔ²µÄ°ë¾¶r=2£¬Óɵ㵽ֱÏߵľàÀ빫ʽÒÔ¼°Ö±ÏߺÍÔ²µÄλÖùØÏµ¿ÉµÃ£®
½â´ð ½â£º£¨¢ñ£©É趯µãPµÄ×ø±êΪ£¨x£¬y£©£¬
ÔòÓÉ$\sqrt{¦Ë}$|PO|=|PA|µÃ¦Ë£¨x2+y2£©=£¨x-3£©2+y2£¬
ÕûÀíµÃ£º£¨¦Ë-1£©x2+£¨¦Ë-1£©y2+6x-9=0£¬
¡ß¦Ë£¾0£¬¡àµ±¦Ë=1ʱ£¬·½³Ì¿É»¯Îª£º2x-3=0£¬·½³Ì±íʾµÄÇúÏßÊÇÏß¶ÎOAµÄ´¹Ö±Æ½·ÖÏߣ»
µ±¦Ë¡Ù1ʱ£¬Ôò·½³Ì¿É»¯Îª£¬$£¨x+\frac{3}{¦Ë-1}£©^{2}$+y2=$£¨\frac{3\sqrt{¦Ë}}{¦Ë-1}£©^{2}$£¬
¼´·½³Ì±íʾµÄÇúÏßÊÇÒÔ£¨-$\frac{3}{¦Ë-1}$£¬0£©ÎªÔ²ÐÄ£¬$\frac{3\sqrt{¦Ë}}{|¦Ë-1|}$Ϊ°ë¾¶µÄÔ²£®
£¨¢ò£©µ±¦Ë=4ʱ£¬ÇúÏßDµÄ·½³ÌÊÇx2+y2+2x-3=0£¬
¹ÊÇúÏßD±íʾԲ£¬Ô²ÐÄÊÇD£¨-1£¬0£©£¬°ë¾¶ÊÇ2£®
ÉèµãQµ½Ö±ÏßFGµÄ¾àÀëΪd£¬¡ÏFQG=¦È£¬
ÔòÓÉÃæ»ýÏàµÈµÃµ½|QF|•|QG|sin¦È=d|FG|£¬ÇÒÔ²µÄ°ë¾¶r=2£®
¼´d=$\frac{4sin¦È}{|FG|}$=$\frac{4sin¦È}{2rsin¦È}$=1£®ÓÚÊǶ¥µãQµ½¶¯Ö±ÏßFGµÄ¾àÀëΪ¶¨Öµ£¬
¼´¶¯Ö±ÏßFGÓ붨Բ£¨x+3£©2+y2=1ÏàÇУ®
µãÆÀ ±¾Ì⿼²é²ÎÊý·½³ÌºÍ¼«×ø±ê·½³Ì£¬Éæ¼°·ÖÀàÌÖÂÛµÄ˼Ï룬ÊôÖеµÌ⣮
| A£® | x0£¼1 | B£® | x0£¾3 | C£® | 2£¼x0£¼3 | D£® | 1£¼x0£¼2 |
| A£® | £¨x-3£©2+y2=25 | B£® | £¨x-3£©2+y2=16 | C£® | £¨x+3£©2+y2=16 | D£® | £¨x+3£©2+y2=25 |
| A£® | $\sqrt{3}$ | B£® | $\sqrt{3}-\frac{1}{2}$ | C£® | $2\sqrt{3}-1$ | D£® | 2 |