题目内容
12.设x>0,y>0,且(x-$\frac{1}{y}$)2=$\frac{16y}{x}$,则当x+$\frac{1}{y}$取最小值时,x2+$\frac{1}{{y}^{2}}$=12.分析 当x+$\frac{1}{y}$取最小值时,(x+$\frac{1}{y}$)2取最小值,变形可得(x+$\frac{1}{y}$)2=$\frac{4x}{y}$+$\frac{16y}{x}$由基本不等式和等号成立的条件可得.
解答 解:∵x>0,y>0,
∴当x+$\frac{1}{y}$取最小值时,(x+$\frac{1}{y}$)2取最小值,
∵(x+$\frac{1}{y}$)2=x2+$\frac{1}{{y}^{2}}$+$\frac{2x}{y}$,(x-$\frac{1}{y}$)2=$\frac{16y}{x}$,
∴x2+$\frac{1}{{y}^{2}}$=$\frac{2x}{y}$+$\frac{16y}{x}$,∴(x+$\frac{1}{y}$)2=$\frac{4x}{y}$+$\frac{16y}{x}$
≥2$\sqrt{\frac{4x}{y}•\frac{16y}{x}}$=16,∴x+$\frac{1}{y}$≥4,
当且仅当$\frac{4x}{y}$=$\frac{16y}{x}$即x=2y时取等号,
∴x2+$\frac{1}{{y}^{2}}$+$\frac{2x}{y}$=16,∴x2+$\frac{1}{{y}^{2}}$+$\frac{2•2y}{y}$=16,
∴x2+$\frac{1}{{y}^{2}}$=16-$\frac{2•2y}{y}$=12,
故答案为:12.
点评 本题考查基本不等式求最值,变形为可用基本不等式的形式是解决问题的关键,属中档题.
练习册系列答案
相关题目
3.曲线C:y=xlnx在点M(e,e)处的切线方程为( )
| A. | y=x-e | B. | y=x+e | C. | y=2x-e | D. | y=2x+e |
20.已知sin200°=a,则tan160°等于( )
| A. | -$\frac{a}{\sqrt{1-{a}^{2}}}$ | B. | $\frac{a}{\sqrt{1-{a}^{2}}}$ | C. | -$\frac{\sqrt{1-{a}^{2}}}{a}$ | D. | $\frac{\sqrt{1-{a}^{2}}}{a}$ |
4.设函数f(x)(x∈R)为奇函数,f(1)=$\frac{1}{2}$,f(x+2)=f(x)+f(2),则f(5)和f(2003)的值分别为( )
| A. | 0和2001 | B. | 1和$\frac{2001}{2}$ | C. | $\frac{5}{2}$和$\frac{2003}{2}$ | D. | 5和2003 |