题目内容

数列{an}中,a1=2,a n+1=an+2n.
(1)求{an}的通项公式;
(2)若an+3n-2=
2
bn
,求数列{bn}的前n项和Sn
考点:数列递推式,数列的求和
专题:计算题
分析:(1)由a n+1=an+2n,得an-an-1=2(n-1)(n≥2),然后利用累加法求数列的通项公式;
(2)把an=n2-n+2代入an+3n-2=
2
bn
,整理后得bn=
2
n(n+2)
=
1
n
-
1
n+2
,再利用裂项相消法求{bn}的前n项和Sn
解答: 解:(1)由a n+1=an+2n,得a n+1-an=2n,
则an-an-1=2(n-1)(n≥2),
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=2[(n-1)+(n-2)+…+1]+2
=2×
[(n-1)+1](n-1)
2
+2
=n2-n+2(n≥2).
验证n=1时上式成立,
an=n2-n+2
(2)把an=n2-n+2代入an+3n-2=
2
bn

n2-n+2+3n-2=
2
bn
,即bn=
2
n(n+2)
=
1
n
-
1
n+2

∴{bn}的前n项和
Sn=1-
1
3
+
1
2
-
1
4
+…+
1
n-1
-
1
n+1
+
1
n
-
1
n+2

=1+
1
2
-
1
n+1
-
1
n+2
=
3
2
-
1
n+1
-
1
n+2
点评:本题考查了数列递推式,训练了累加法求数列的通项公式,训练了裂项相消法求数列的和,是中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网