题目内容
数列{an}中,a1=2,a n+1=an+2n.
(1)求{an}的通项公式;
(2)若an+3n-2=
,求数列{bn}的前n项和Sn.
(1)求{an}的通项公式;
(2)若an+3n-2=
| 2 |
| bn |
考点:数列递推式,数列的求和
专题:计算题
分析:(1)由a n+1=an+2n,得an-an-1=2(n-1)(n≥2),然后利用累加法求数列的通项公式;
(2)把an=n2-n+2代入an+3n-2=
,整理后得bn=
=
-
,再利用裂项相消法求{bn}的前n项和Sn.
(2)把an=n2-n+2代入an+3n-2=
| 2 |
| bn |
| 2 |
| n(n+2) |
| 1 |
| n |
| 1 |
| n+2 |
解答:
解:(1)由a n+1=an+2n,得a n+1-an=2n,
则an-an-1=2(n-1)(n≥2),
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=2[(n-1)+(n-2)+…+1]+2
=2×
+2=n2-n+2(n≥2).
验证n=1时上式成立,
∴an=n2-n+2;
(2)把an=n2-n+2代入an+3n-2=
,
得n2-n+2+3n-2=
,即bn=
=
-
.
∴{bn}的前n项和
Sn=1-
+
-
+…+
-
+
-
=1+
-
-
=
-
-
.
则an-an-1=2(n-1)(n≥2),
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=2[(n-1)+(n-2)+…+1]+2
=2×
| [(n-1)+1](n-1) |
| 2 |
验证n=1时上式成立,
∴an=n2-n+2;
(2)把an=n2-n+2代入an+3n-2=
| 2 |
| bn |
得n2-n+2+3n-2=
| 2 |
| bn |
| 2 |
| n(n+2) |
| 1 |
| n |
| 1 |
| n+2 |
∴{bn}的前n项和
Sn=1-
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| n-1 |
| 1 |
| n+1 |
| 1 |
| n |
| 1 |
| n+2 |
=1+
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 3 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
点评:本题考查了数列递推式,训练了累加法求数列的通项公式,训练了裂项相消法求数列的和,是中档题.
练习册系列答案
相关题目
在△ABC中,若sin2A+sin2C+cos2B<1,则△ABC一定是( )
| A、钝角三角形 | B、直角三角形 |
| C、锐角三角形 | D、不确定 |
如图,D是△ABC的边AB的中点,则向量
=( )

| CD |
A、-
| ||||
B、-
| ||||
C、
| ||||
D、
|